Programming in the Architecture for Agile Assembly

Jay Gowdy and Alfred A. Rizzi

The Robotics Institute
Carnegie Mellon University

Abstract

The goal of the Architecture for Agile Assembly (AAA)
1s to enable rapid deployment and reconfiguration of
automated assembly systems through the use of coop-
erating, modular, robust, robotic agents. AAA agent
programs must be completely distributed and specify
cooperative precision behavior in a structured, well
known environment. Thus, the structure of agent
programs s carefully designed to allow packaging of
all the information necessary for coordinated execu-
tion when downloaded to a physical agent. To make
the specification and execution of the potentially com-
plex and fragile cooperative behaviors robust, our pro-
grams define ordered sets of control strategies and al-
low a low-level real-time hybrid control system to se-
quence the strategies rather than burdening the agent
program with the management of this critical detail.
This novel approach to programming automation sys-
tems has been tested both in simulation and on proto-
type hardware.

1 Introduction

The overall goal of the Architecture for Agile Assem-
bly (AAA) is agility, — to enable both the rapid de-
ployment of factories to deliver a product to market
quickly and the rapid reconfiguration of factories to
adapt to changing technologies and market needs. As
described in [7], AAA achieves such agility by depend-
ing on modular robust robotic agents. Each agent op-
erates in a deliberately limited domain, but possesses
a high degree of capability within that domain. For
example, our instantiation of AAA, minifactory, is fo-
cused on four degree-of-freedom (DOF) assembly of
high-value, high-precision electro-mechanical systems
(Fig. 1). In a minifactory there are agents (called
couriers) that are “experts” in moving products in the
plane of the factory floor, and other agents (called ma-
nipulators) that are “experts” in lifting and rotating
products. The agents are physically, computationally,
and algorithmically modular, and thus only when act-
ing cooperatively in groups can they perform the 4
DOF operations required to produce a product.

In AAA, specifying factory behavior presents some

Overhead

Precision
parts feeder
S

‘»-:\“ri
N
>

.>/ \ 2| ‘:
el onove

Bulk random
parts feeder

1

/)
|

frame

Figure 1: A minifactory segment

unique challenges; since there is no central factory
“brain”, and thus there is no single program for an
entire AAA factory. Instead each agent has its own
program which must reliably execute without access to
any central or global database. AAA does provide an
integrated interface tool, described in [3], which allows
centralized design, simulation, and monitoring of the
factory, but this centralized tool need not be present
for a factory to operate.

In practice an agent’s execution in AAA is divided
into two layers. A higher-level discrete layer is respon-
sible for the semantics of factory operation and the
associated discrete events. This layer must deal with
such issues as resource negotiation, factory schedul-
ing, and product flow decisions. In general these tasks
require minimal communications bandwidth between
agents and are not concerned with true real-time op-
eration of the agent. A lower-level continuous layer is
responsible for sequencing and executing the specific
control laws used to effect the physical environment
of the agent. This continuous layer not only executes
individual parameterized control strategies, but also
manages the transitions between a carefully selected
set of parameterized controllers. The continuous layer
may require high communications bandwidth, since of-
ten the states that it must monitor will be on other
agents, and true real-time operation is critical. This
notion of automatically managing the transition be-
tween controllers was introduced in [2] and applied,

theoretically, to the domain of minifactory in [6].

The programs written by the user and downloaded
to the agent form the upper half of this program hier-
archy. The lower half is “hard-coded” in the form of
a palette of real-time control strategies and a manager
which executes them and administers their sequencing.
The discrete layer programs parameterize and deploy
the control strategies used by the continuous layer, and
then views the continuous state of the agent through
the discrete “lens” of monitoring transitions between
controllers.

1.1 Programming Model

Most industrial robot programming languages are
based on standard computer languages, with the ad-
dition of special primitives, constructs, and libraries
to support the physical control of a robot[5]. These
languages are usually targeted at the control of a sin-
gle robot, and do not inherently provide support for a
program which must be distributed across many dif-
ferent robots. While this model can be effective for
“trade-show” or “laboratory” demonstrations of a sin-
gle robot, it leads to significant complications when
a robot must be integrated and coordinate with its
neighbors in an actual factory.

More abstract programming models are available[l,
4]; typically these are either “task” or “process” based
and are often utilized for programming of work cells
— which may contain multiple robots. While such
approaches can eliminate some of the problems asso-
ciated with developing coordination strategies for ar-
bitrary machines, they require a central system “con-
troller,” and are thus vulnerable to single point failures
and bottlenecks.

Fundamentally, these approaches to robot program-
ming make a distinction between the continuous do-
main of control theory and the discrete domain of event
management. We choose to place this distinction at a
slightly higher level and make it a more formal abstrac-
tion barrier than most. Traditionally, the continuous,
state based view is relegated to running controllers,
with all decisions about which controllers to run and
when to run them made by systems using a discrete,
event based view. Instead we make use of continu-
ous mechanisms to guide the transitions between con-
trollers as well as to run the controllers themselves,
freeing the agent programs to deal with the more rele-
vant and abstract problem off deciding what to do and
how to do it.

2 Distributed Programming

As there is no central controlling program for a mini-
factory, the operation of the system results from the
cooperation of programs running on each agent. The
agents interact with each other and with the factory
infrastructure to perform the desired assembly task in

an efficient and reliable manner. The distributed, but
cooperative nature of the program content has consid-
erable implications upon the program form.

Currently, our agent programs are completely text
based and written in Python, an object oriented lan-
guage which can be interpreted or byte-compiled[8§].
An agent program is not simply a script, but rather
defines an instance of a class which has a number of
specific methods. The program can define a new class
to be instantiated, or subclass from a preexisting one,
but the class must provide a standard set of methods
to be valid. This concept is very similar to the Java
applets that are used in world-wide web programming.

A key to writing and distributing an agent program
is that even though each agent’s program must execute
without access to any central database, each individual
agent program will necessarily reference other parts of
the factory. For example, a courier must be able to
know it will be interacting with a particular manipu-
lator much as a manipulator needs to know it will get
parts of a specific type from a specific parts feeder.

Agent class definition
class Program(ManipProgram) :
Binding method

def bind(self):
bind a bulk feeder
self.feeder = self.bindDescription("ShaftFeeder")

bind product information
self.product = self.bindPrototype(''ShaftB")

Execution method
def run(self):
while 1:
convenience function for getting a
product from a feeder
self.getPartFromFeeder(self.product, self.feeder)

Wait for a courier to rendezvous
with the manipulator for feeding
partner = self.acceptRendezvous("Feeding")

and transfer the product to the courier
self.transferGraspedProduct(partner)

instantiate the applet
program = Program()

Figure 2: A simple manipulator program

In order to reference these factory components
within the text of an agent program, users refer to
these factory elements by names. Currently, the names
must be unique in the factory, i.e. if a manipulator ref-
erences a parts feeder named ShaftFeeder then there
must be only one parts feeder with that name in the
factory. A running physical agent can not resolve the
name ShaftFeeder with a central resource, so the agent
program is split into two segments, a “bind” step and
a “run” step, which means that any valid program in-
stance must have two methods, bind and run. The
bind method declares what “global” entities the agent
will utilize during its execution. The run method is
the script which actually runs during execution, im-
plementing the “high-level” discrete logic of the agent
which initiates and coordinates the agent behavior.
Figure 2 shows the definition of these methods for a

"Applet' class definition
class Program(CourierProgram) :
Binding method
def bind(self):
superclass has some binding to do
CourierProgram.bind(self)

Bind to a particular manipulator
self.source = self.bindAgent ("FeederManip")

Bind to a particular factory area
self.corridor = self.bindArea("CorridorA")

Execution method

def run(self):
initialize the movement
self.startIn(self.corridor)

block until manipulator is ready
self.initiateRendezvous(self.source, "Feeding")

move into the workspace
self.moveTo(self.sourceArea)

coordinate with manipulator to
get product from it
self.acceptProduct()

The coordinated maneuver is done
self.finishRendezvous("Loading")

move out of the workspace
self .moveTo(self.corridor, blocking=1)

instantiate the applet
program = Program()

Figure 3: A simple courier program

sample manipulator program.

When executing a simulated agent program, the
bind step is simply a matter of looking up the rele-
vant items in the simulation database and proceeding
to execute the run method. Before an agent program
can be downloaded from the simulation environment
to the physical agent it must be first be “bound” with
all of the global factory information the agent will
need to run the program. To bind a program, the
interface tool executes that program’s bind method,
and uses the results to construct a small database of
all the information necessary for the agent to locate,
both geometrically and logically, all of the factory ele-
ments needed to run the program without reference
to any global resources. For example, in the sam-
ple courier program (Fig 3) the bind method calls
bindAgent ("FeederManip"), which declares that the
agent program wants to know about the manipula-
tor named FeederManip and assigns the result of that
binding to a local member variable for use in the run
method. As a result of the invocation, the interface
tool will add the relative position of FeederManip in
the courier’s frame of reference as well as the network
address of FeederManip to the local database which is
sent to the courier with the program text. After being
downloaded with this database the physical agent can
execute the run method, which in-turn interacts with
the lower-level continuous layer to execute the desired
physical behavior.

3 High level protocols

Just as there is no central database that agents can rely
on during factory operations, there is no central coor-
dinator to organize and direct the agents. Each agent
must be programmed to coordinate with its peers to
effect the appropriate product flow and assembly op-
erations. In order to achieve this coordination, agents
must know and understand common communications
protocols. We identify several different types of proto-
cols within our factory, such as built-in protocols that
every agent must provide in order to make possible
safe factory operations, and extensible protocols that
are specific to a particular instantiation of AAA or
particular solution approach.

3.1 Built-in protocols

A built-in protocol is one that will be necessary for
any agent in any AAA system to produce and under-
stand. For example, there can not be any central ar-
biter parceling out resources in any AAA system, so
every agent has built-in the ability to negotiate with
other agents over resource reservation. Agents must
have this ability to negotiate for resources in order to
ensure safe factory operations.

The primary shared resource that our agents nego-
tiate over currently is space on the platen. We assume
that a courier will only go where it says it will go,
and that there are no “outside” influences which fail
to reserve the resources they consume. These assump-
tions — which are reasonable in the highly structured,
very stable, and well known minifactory environment
— allow us to dispense with the inter-agent percep-
tion systems that would be necessary to implement
completely “reactive” motion, in which agents would
be required to observe other agents’ positions and in-
tentions (either with sensors or by querying) prior to
taking action. The low cost and predictable behavior
obtained through the use of a reservation system far
outweighs the risk of our assumptions being violated
and the minor efficiency losses which will inevitably be
incurred. We foresee using a similar distributed reser-
vation system to arbitrate the consumption of more
abstract resources such as vibration, noise, thermal,
or optical emissions.

Another example of a built-in information proto-
col is seen during a rendezvous, i.e. when a courier
and a manipulator cooperate to perform some process
on the products: When agents cooperate to perform
the manufacturing process, they also must exchange
information about that process. In AAA, there is no
central database of product information, so product
information must flow with the products themselves.
Our products have two levels of information, prototype
information — information that is true about all prod-
ucts of a certain type, such as nominal geometry, and
instance information — information that applies only
to a particular instance of a product, such as serial

numbers or dimension variations. AAA provides built
in protocols for passing product instance information
between agents and for acquiring product prototype
information either from peers at run-time or from a
database at program binding time.

3.2 Extensible protocols

One more protocol that all agents share is the proto-
col for defining and extending semantic protocols. A
particular semantic protocol may not be in use by all
agents, but agents can negotiate to confirm whether
they share the same semantic protocols before proceed-
ing with operations.

For example, in our current approach to program-
ming agents in minifactory, we view the agent pro-
grams as having two types of interactions, the ren-
dezvous between a courier and a manipulator in which
the manufacturing process is performed and informa-
tion about the process is exchanged, and the gross
courier motion, in which couriers move from ren-
dezvous to rendezvous without colliding. Keeping the
couriers from colliding into each other results from
using the built-in geometry resource negotiating pro-
tocols, but deciding in what order couriers may ren-
dezvous with manipulators, i.e. distributed factory
scheduling, is the domain of an extensible protocol.
An example of this protocol can be seen in the sample
courier program (Fig. 3), which initiates a rendezvous
to be accepted as specified in the sample manipulator
program (Fig. 2).

This protocol is particular to minifactory, and par-
ticular to our current approaches to programming
minifactory agents. It may not be useful in other
AAA instantiations, and almost certainly will be sig-
nificantly changed or augmented over time in our mini-
factory instantiation. Thus, a courier and a manipu-
lator need to negotiate to ensure that they share a
common rendezvous protocol before they can work to-
gether.

4 Low Level Programming

As outlined in Section 1 an agent program in a minifac-
tory has two distinct but related run-time responsibil-
ities: i) it must carry out semantic negotiations with
its peers to perform the goal of the factory; i) it must
properly parameterize and sequence the application of
low-level control strategies to successfully manipulate
the physical world. The programming model we are
utilizing attempts to simplify the relationship between
these two responsibilities and minimize their impact
upon one another. The basics of how to accomplish
high-level programming tasks was the topic of Section
3. Here we turn our attention to the low-level tasks
and the programming of physical motion.

Specifically, in an effort to reduce the complexity
associated with writing programs for agents we have

adopted the notion of allowing the low level control
strategies to become responsible for their own switch-
ing and sequencing. Thus the problem of deciding ex-
actly when and how to switch between low level control
strategies is removed from the agent program and is
thus isolated from the high-level semantic negotiations
that are the primary domain of the agent program.

4.1 Underlying Model

The fundamental model for the execution of control
strategies was presented in [6]. Briefly, rather than
ask the program to generate trajectories through the
free configuration space of the agent, the program will
be responsible for decomposing the free configuration
space into overlapping regions and parameterizing con-
trollers associated with each region. A hybrid control
system is then responsible for switching or sequenc-
ing between the control policies associated with this
decomposition to achieve a desired overall goal.

This scheme describes the behavior of any one agent
in terms of a collection of feedback strategies based
on the state of both the individual agent and its im-
mediate peers. The result is a hybrid on-line control
policy (one that switches between various continuous
policies) which makes use of the entire collection of
available policies to systematically make progress to-
ward a goal based on an agent’s estimate of both its
own and its peers’ state. To provide the desired level
of system flexibility the selection of goals and the as-
sociated prioritized decomposition of the free space is
left to the agent program.

More formally, given a set of controllers, U =
{®1, ..., PN}, each with an associated goal, G(®;), and
domain,D(®;) — where it is presumed that under the
action of ®; any state that starts in D(®;) will be
taken to G(®;) without leaving the set D(®;). We
then say that controller &1 prepares controller @5, de-
noted ®; = @y, if its goal lies within the domain of the
second G(®1) C D(®3) [2, 6]. For an appropriately pa-
rameterized set of controllers, U, this relation induces
a generally cyclic directed graph. Assuming that the
overall goal, G, coincides with the goal of at least one
controller, G(®;) = G, then by starting with ®; and
recursively tracing the relation backwards through the
corresponding graph, one arrives at Ug C U — the
set of all controllers from whose domains the overall
goal might be eventually reached by switching between
control policies. The domain of a properly conceived
composite controller, should then be Jgcp, D (@),
and thus we have an “automatic” method by which
to guide the system from any state in this union of
domains to the goal.

Consider, for example, the trivial planar configura-
tion space depicted in Fig. 4. Note that the free space
has been decomposed into four separate regions with
the overall goal located in the upper right corner of
the configuration space (G4). Here, ®; is responsible
for for taking all states in the lower convex region to

Figure 4: Example decomposition of a trivial planar
configuration space.

(1, and thus prepares ®,. Similarly the placement of
G5 and G3 allow both &5 and ®3 to prepare &4 which
regulates the state to G4, the overall goal. It is the
responsibility of the underlying hybrid control system,
discussed in detail in [2], to switch between the indi-
vidual @; to achieve this overall goal. While this trivial
example is illustrative it is important to note that we
have only considered the configuration of the system
in this example, while in general the actual domains,
D(®;), for the constituent controllers are defined over
the state space of the system — the positions and ve-
locities of the agent as well as those of its peers with
which it is closely coordinating.

4.2 Programmatic Interface

Given the underlying model for executing physical ac-
tion described in Section 4.1, it becomes the responsi-
bility of the agent program (specifically the script de-
fined by its run method) to create, parameterize, and
manage the currently active set of controllers, U, along
with the associated sets of goals, G(®;), and domains,
D(®;). Thus the script is only responsible for choosing
the current “overall” goal along with appropriate in-
termediate sub-goals, and providing parameterizations
of control strategies to accomplish those goals. The
complex and error prone problem of making real-time
changes to the underlying control system is left to the
hybrid control structure outlined above.

The interface between the script and this controller
manager is quite straightforward. The class from
which a particular agent program instance is derived
provides standard tools for creating and parameteriz-
ing controllers and their associated domains. Having
constructed a controller the script can then insert into
an ordered list of active controllers from which the con-
troller manager will select the appropriate instance to
execute in real-time. The details of high-bandwidth
monitoring and coordination of an agent and its peers
state is performed by these lower levels, and utilizes a
dedicated local network. This local network is used to
pass relevant information between agents only about
those variables that effect their execution, resulting
in efficient utilization of the available communication
bandwidth in a manner that is transparent to the agent
program.

Communication of progress and completion of tasks
back to the script is accomplished by use of either call-
back functions or direct polling of the actual state of
the agent. In general the expectation is that scripts
will submit a moderately sized list of control actions
along with a set of fail-safe and fall-back strategies ca-
pable of responding to the most dire circumstances,
then sleep (wait for a call-back) until either progress
has been made or a failure has been detected. When
appropriate progress has been made the script will,
while motion is still executing, append additional con-
trol actions to the “top” of the active controller list
indicating new goals and delete those control actions
which are no longer useful. If a failure has been de-
tected the program will proceed in a similar fashion,
only the actions added to the list will most likely at-
tempt to recover from the problem.

By parameterizing (setting the goal, defining the
domain of applicability, specifying gains, etc.) the
specific controllers and ordering of their placement on
the list of active controllers a script is able to specify
complex and efficient physical motion that is funda-
mentally robust. This provides a rich and expressive
method for programs to specify physical motion while
at the same time minimizing the risks associated with
writing those programs.

submit actions to move from self.current to area
def moveTo(area):

get the goal at boundary of area

and self.current in self.current

x,y = self.getBoundaryGoal (area)

create and submit action
controller = self.goTo(x,y)
domain = self.inArea(self.current)
self.submit(controller, domain)

reserve area, blocking if necessary
self.reserve(area)

get goal at boundary of area and
self.current in area
X,y,overlap = self.getOverlapGoal (area)

create and submit action to cross into
the new area
self.submit(self.goTo(x,y), self.inRegion(overlap))

create and submit action to drive to the

goal in area

note that a callback class is invoked when

this action starts which unreserves self.current

self.submit(self.goTo(x,y), self.inArea(area),
start=Unreserve(self.current))

keep track of current area
self.current = area

Figure 5: Code fragment for moveTo.

In practice the details of this interface are hidden
from the programmer by a set of standard “conve-
nience functions.” For example the moveTo(...) call
in Fig. 3, would actually expand to the code frag-
ment shown in Fig. 5. It is here that the specific re-
source reservation protocol mentioned in Section 3 is
implemented and where a “standard” set of controllers
are parameterized and placed on the list of active con-
trollers. Note the registration of a call-back method

to indicate exit from the initial area and to free the
reservation held on it.

5 Conclusion and Future Work

The requirements of AAA have led us to a new model
for programming assembly systems. AAA agent pro-
grams must be completely distributed and specify co-
operative precise behavior in a structured, well known
environment. Thus, the structure of agent programs
is carefully designed to allow packaging of all the in-
formation needed to execute when downloaded to a
physical agent. The programs must use standard high-
level protocols to initiate the required cooperative be-
havior. To make the specification and execution of
the potentially complex and fragile cooperative behav-
iors robust, our programs define ordered sets of con-
trol strategies and allow a low-level real-time hybrid
control system to sequence the strategies rather than
burdening the agent program with the management of
this critical detail.

We have tested this approach in simulation by con-
structing virtual factories with several couriers and
manipulators cooperating to perform part of the as-
sembly of small (2 millimeter) transducers. In ad-
dition, we have written agent programs which, both
in simulation and hardware, exercise our prototype
courier. We are currently integrating our prototype
manipulator in order to implement multi-agent pick-
and-place tasks. We will continue to validate the pro-
gramming approach with real tasks as we develop ad-
ditional hardware that supports those tasks.

There is much yet to do to address some of the prac-
tical implications of our programming model. For ex-
ample, in order to produce a working factory, users
must generate many correct cooperating agent pro-
grams. Fortunately, an individual agent’s scope is
fairly limited, and it has powerful tools for working
within its scope so our hope is that each agent program
will be relatively simple and short. Unfortunately, no
matter how short or simple the programs, the fact re-
mains that some factory programmer has to generate
an individual program for each agent in the system. In
addition to the potential tedium of generating dozens
of programs, the user is essentially writing large, very
distributed programs, with all of the known pitfalls of
that domain, such as deadlocks or livelocks.

We could address this problem through the use of
graphical programming techniques to ease the produc-
tion of the individual agent programs, but we feel that
any advantage gained would be purely cosmetic. Fun-
damentally, what is required is a method of presenting
the factory programmer with a different way of looking
at the programming problem. For example, users may
want a factory-centric view of the problem, in which
they can specify the factory behavior as a whole by in-
putting a work-flow model, i.e. what processes have to
occur and in what order. Ultimately, users may want

to take a product-centric view, in which they enter
product models annotated with some process infor-
mation. The AAA programming environment would
have to provide semi-automatic, user-guided methods
of transforming such centralized user views into factory
layouts and distributed agent programs.

Regardless of what view the user has of factory pro-
gramming, agent-centric, factory-centric, or product-
centric, ultimately an actual AAA factory must ex-
ecute that user program as a set of completely dis-
tributed programs on a set of agents interacting with
each other and with the product components to per-
form the assembly task. This paper has documented
the programming model and protocols we have de-
signed as a basic building block for future systems
which can bring the vision of rapid deployment, recon-
figuring, and reprogramming of automated assembly
systems closer to reality.

Acknowledgements

This work was supported in part by NSF grant DMI-
9523156. The authors would like to thank Ralph Hol-
lis, Arthur Quaid, Zack Butler, and Patrick Muir for
their invaluable work on the project and support for
this paper.

References

[1] G.Berry and G. Gonthier. The ESTEREL synchronous
programming language: design, semantics, implemen-
tation. Science of Computer Programming, 19(2):87-
152, November 1992.

[2] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek.
Sequential composition of dynamically dexterous robot
behaviors. International Journal of Robotics Research,
1998. (to appear).

[3] J. Gowdy and Z. J. Butler. An integrated interface tool
for the architecture for agile assembly. In IFEE Int’l
Conf. on Robotics and Automation, 1999.

[4] R. W. Harrigan. Automating the operation of robots
in hazardous environments. In Proceedings of the
IEEE/RSJ Int’l Conf. on Intelligent Robots and Sys-
tems, pages 1211-1219, Yokohama, Japan, July 1993.

[5] T. Lozano-Perez. Robot programming. Proceedings of
IEEE, 71(7):821-841, 1983.

[6] A. A. Rizzi. Hybrid control as a method for robot mo-
tion programming. In IEEFE Int’l. Conf. on Robotics
and Automation, pages 832-837, Leuven Belgium, May
1998.

[7] A. A. Rizzi, J. Gowdy, and R. L. Hollis. Agile Assem-
bly Architecture: An agent-based approach to modular
precision assembly systems. In IFEFE Int’l. Conf. on

Robotics and Automation, pages 20-25, Albuquerque,
NM, April 1997.

[8] G. van Rossum. Python Tutorial. Corporation for Na-
tional Research Initiatives, Reston, VA, August 1998.

