
To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

Mechatronic objects for real-time control software development

Patrick F. Muira and Jeremy W. Hornerb

aRobotics Institute and the bDepartment of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT
The design of real-time control software for a mechatronic system must be effectively integrated with the system

hardware in order to achieve useful qualitative benefits beyond basic functionality. The sought-after benefits include: rapid
development, flexibility, maintainability, extensibility, and reusability. In this work, we focus upon the interface between the
device drivers and the control software with the aim to properly design this interface to best realize the aforementioned
benefits. The results of this fundamental research include the development of an easily manageable set of four C++ object
classes following an object-oriented approach to software design. These Universal Mechatronic Objects (UMOs) are
applicable to a wide spectrum of actuators including dc motors, stepper motors, and solenoids; and sensors including
pressure sensors, microswitches, and encoders. UMOs encapsulate the interface between the electrical subsystem and the
control subsystem, providing the control software developer with a powerful abstraction that facilitates the development of
hardware-independent control code and providing the electrical subsystem developer with an effective abstraction that
facilitates the development of application-independent device drivers. Objects which are intuitively related to hardware
components of the mechatronic system can be declared using the UMOs early in the system development process to
facilitate the rapid concurrent development of both the electrical and the control subsystems.

Our UMOs were developed as part of a project to implement a real-time control system for a z-theta robotic
manipulator. The z-theta manipulator is one component of the Minifactory project in the Microdynamic Systems Laboratory
at Carnegie Mellon University. The goals of this agile assembly project include the reduction of factory setup and
changeover times, plug-and-play type modularity, and the reuse of its components. The application of UMOs to the
manipulator software development is shown to be consistent with these goals.

Keywords: object oriented programming, mechatronics, real-time control, mechatronic system design

1. INTRODUCTION
1.1 The growing role of mechatronics1

The development of systems incorporating mechanical, electrical, computer control and application software
subsystems, is becoming commonplace. Today there are more solution options available to mechatronic system developers
than ever before. Given a desired system functionality, there are often multiple solutions which will achieve the desired
functionality using differing combinations of technologies. Instead of simply finding a satisfying solution, the opportunity
to choose the “best” solution from among the alternatives is a reality. A solution which tightly integrates a set of highly
interdependent components may be costly in terms of schedule and resources but result ultimately in the highest possible
performance. On the other hand, a solution which is the straight-forward combination of existing technologies can
minimize schedule and resource requirements, but does not take advantage of interdisciplinary synergies and results in
suboptimal performance. We advocate a middle ground position in this paper, where interdisciplinary synergies are
incorporated through proper configuration of subsystems, but the bulk of the development schedule and resources are
devoted to realizing each subsystem from existing technologies. The intent being to achieve some desired synergies between
subsystems while maintaining low resource and schedule requirements.

Specifically, we address mechatronic system development as a composition of subsystems which correspond roughly to
the technical disciplines involved: mechanical, electrical, control and software engineering. Often a team approach is used,
where each member is skilled in a relevant discipline. Given a functional specification for the system, and an understanding
of the issues involved, compose the system from subsystems each of which can be reasonably achieved by the appropriate
expert, then realize each of the subsystems and assemble the complete system. The synergy between subsystems of the
system is built into the manner in which the system is composed from individual subsystems.

Once a synergistic set of subsystems has been configured, there remains the fundamental problem of specifying the
interfaces between subsystems. As these integration and interfacing issues become more and more prevalent in research and

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

development projects, it is apparent that new mechatronics tools and methodologies will be needed to deal with them. In
this paper, we present one such tool: Universal Mechatronic Objects (UMOs). These UMOs can be applied to any
mechatronic system to form the interface between the electrical and the computer control subsystems and thereby act as an
effective foundation upon which the control and application software can be built.

In the following discussions, we will refer to the person/team responsible for implementing the electrical and controls
subsystems respectively as the electrical developer and the controls developer. The discussions do not specify how many
team members need to participate; in fact, a single person could act as both electrical developer and controls developer for
some projects. Advantages accrue through the application of UMOs independent of the team’s size and makeup.

1.2 The electrical subsystem/control subsystem interface
We are focusing upon the interface between the electrical subsystem and the control subsystem in this work. Figure 1

depicts the various hardware and software layers involved. The first software layer above the hardware consists of device
drivers which interact directly with the computing hardware. The device drivers are considered part of the electrical
subsystem because their development requires intimate knowledge of how the actuators and sensors are interfaced to the
computing hardware. It is then efficient use of resources; therefore, that an electrical developer compose the device drivers.
The control developer will need to read the sensors and write to the actuators, but need not be concerned with the details of
how this reading and writing is accomplished.

Figure 1: Layers of Software for
a Mechatronic System

As can be seen in Figure 1, mechatronic objects are shown to be the
interface between the device drivers (i.e., the electrical subsystem) and the
control software (i.e., the control subsystem). Given this arrangement, we
discuss in Section 4, how we designed the mechatronic objects to encapsulate
the access functions for actuators and sensors so that the hardware-dependent
details of the device drivers are hidden from view of the control developer.
Further, the application-specific details of the control algorithms and
application software are hidden from view of the electrical developer. The
assembly of the mechatronic objects can be accomplished by the team member
responsible for system integration, (i.e., a mechatronics engineer perhaps),
early in the project, before either the electrical or control developers begin their
work. Periodically throughout the course of the project the mechatronic objects
can be re-evaluated based upon progress thus far. We propose that by defining
the boundary between the electrical and control subsystems by the use of a
standard set of UMOs, the entire project will proceed more quickly, efficiently
and reliably toward the desired functional system realization.

1.3 Object oriented programming
We are advocating that an object oriented paradigm is appropriate for the definition of the electrical/control subsystem

boundary. Object oriented programming, in contrast with more traditional structured programming methodologies is
modular in a way which allows the assembly of all variables and functions relating to a concept. For example, an actuator
(sensor) has associated with it certain variables and functions which all must be present for the programmer to use it
effectively, but which are not necessary if the actuator (sensor) is not used. The required variables, called member variables,
might include the actuator’s name, the last value commanded to the actuator, and a variable whose value indicates whether
the actuator is synchronous or asynchronous. The required functions, called member functions, might include an
initialize function that sets-up the actuator for use, a write function, and a finalize function that is called when
the program is about to exit. In such a case, it is useful to encapsulate these variables and functions into a single module,
called an object. The C++ language has been designed to facilitate OOP with the built-in type class. An object that is
derived from a particular class is called an instance of the class.

One advantage of the use of C++ and Object Oriented Programming (OOP) is the notion of inheritance. We can define
a class which encapsulates all of the member variables and functions required for a wide spectrum of actuators and is
entirely independent of any particular actuator. Then we can derive an instance of the class for each particular actuator in
our system. Each of these actuator objects will inherit the member variables and functions of the parent class with no
additional coding. The modularity enforced through the application of OOP allows software to be constructed so that
improvements can be implemented through local modifications only. Thus for example, if changes are made to the device

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

driver code, no changes will be necessary in the control code and visa versa. Also, because the programming objects (i.e,
actuators and sensors) relate directly with the actual system components (i.e., actuators and sensors), no new abstract
concepts need to be mastered. Further benefits will accrue if UMOs are applied consistently across multiple projects
incorporating a wide variety of hardware because control software from one project can be readily reused on another.

1.4 Paper organization
We present our reasoning and implementation of UMOs as follows. Section 2 enters into a discussion of the

motivations for our research in the area. Desired characteristics of both the system development process and the resulting
system are introduced to motivate our work. Following this, Section 3 describes prior work which is relevant to the topic.
Our four UMOs are detailed in Section 4. Here we provide complete printouts of C++ code which may be included and used
in the software for any mechatronic system. Then in Section 5, we describe our application of UMO’s to the development of
a z-theta robot manipulator. This manipulator is an important component of an on-going project to develop a modular
reconfigurable system for automated precision assembly called Minifactory. Finally, in Section 6, we conclude with a short
discussion of the results.

2. MOTIVATION
2.1 Introduction

There are several possible approaches for interfacing the electrical and control subsystems. Consider this simple but
prevalent situation: A mechatronic system incorprates a DC motor driven by an amplifier that is interfaced to the control
computer by a Digital-to-Analog Converter (DAC) circuit. A control function is implemented to compute the voltage to next
be applied to the motor. How do we write the software to command this voltage?

One solution would be to write an inline device driver within the control function that outputs an arbitrary 8-bit value
to the DAC. Then, convert the voltage value into an appropriate 8-bit value and execute the device driver with the computed
8-bit value. This solution would function, but has many undesired characteristics. Firstly, the inline device driver code must
be repeated in all of the functions which utilize the DAC which increases the size of the code unnecessarily. The control
developer also needs to understand the operation of the DAC so as to convert his desired voltage into an appropriate 8-bit
value. The more technology each team member must master, the greater are the chances for errors. It would be
advantageous for the control developer to be able to write his code without needing to understand parts of the electrical
subsystem. If ever the device driver needed to be changed, (for example, if a bug is found in the driver), then all copies of
the device driver need to be located and changed. Such practices are prone to errors resulting from inconsistent coding of
the device drivers.

An improvement on the aforementioned solution would be to write the device driver as a macro and allow the compiler
to insert inline code everywhere the macro is invoked from the single master definition. This method ensures that all
applications of the function are consistent, but does nothing to relieve the control developer from mastering parts of the
electrical subsystem.

An even better solution might be to encapsulate the device driver in a function. This single function can then be called
at runtime by the control software and any other software that uses the DAC. The device driver function could require a
parameter which specifies the desired motor voltage in volts so that the control developer need not understand how to
convert his voltage into an appropriate 8-bit value for the DAC. This solution is a widely-practiced method of solving the
problem, because venders of DAC cards often provide device drivers with their products (as do vendors of many other types
of interface cards). However, this solution still requires the control developer to know that a DAC is utilized in the
commanding of the voltage to the motor. This issue may not seem very important in the case of one DAC and one motor,
but with typical systems, multiple actuators with multiple types of interface circuits (e.g., digital IO (DIO), quadrature
counters, ADC, and DAC circuits) are present and the control engineer is required to match IO channels to actuators and
sensors and understand which electrical components are involved with each command of a voltage to a motor. Further,
there is often more than one way to command a particular interface circuit to produce the same result (e.g., writing bits,
bytes, or words) and sometimes values must be written in associated registers in order to achieve the results desired (e.g.,
data direction registers, output enable bits, etc.) This solution simply requires the control developer to master too much of
the electrical system which has presumably already has been mastered by the electrical developer. And what if some part of
the electrical subsystem is reconfigured? The control code must then also be changed.

Now consider a solution arrived at by proper application of the object-oriented paradigm. The DAC-Amplifier-DC
Motor combination is declared as an object. Even though this object is not detailed until Section 4, we can describe the
effects of its use here. If the object is one of a standard set of UMOs, the control developer may already be familiar with the

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

interface which it presents, so he can apply it with no additional knowledge of how the results will be achieved. The
solution is simply for the control engineer to include a standard header file in the file containing the control software, and at
the point where he needs to command the voltage to motor he calls the member function
motor.write(voltage) where motor is the name of the particular motor and voltage is the desired motor voltage.
Similarly the electrical developer may already be familiar with the UMOs and he knows that he must write a device driver
segment that takes as input a voltage in volts and executes all the conversions and low-level bit twiddling required to get
that voltage to appear at the motor. This scenario is indeed an improvement over the prior methods. The control developer
doesn’t have to understand the operation of the DAC. In fact, he need not know that a DAC and amplifier are used. Even if
the DAC and amplifier are replaced half-way through the project by a DIO and an amplifier with a direct digital input, the
control engineer need not be concerned. Furthermore, the control developer can start working on his control software before
the circuits are built, before the motor arrives, even before the electrical developer who will be writing the device driver
joins the team. Likewise, the electrical developer can work independently. Moreover, there will be no disagreements over
how values are passed between subsystems because this is part of the definition of the UMOs and is available for inspection
by all beforehand.

We do not wish to imply that the control subsystem can be written in all cases without accounting for the transfer
functions of the actual electronics used. However, it has been our experience that in most practical cases the form of the
control software can be designed independent of the drive hardware and only gains need be adjusted for use with differing
drive electronics and interface circuits.

Our intention here is merely to introduce some of the important issues relating to the specification of the
electrical/control interface. In Sections 4 through 6, we provide complete declarations of the UMOs and the reasoning
behind them.

3. PRIOR WORK
The subject of our work can be succinctly described as the application of OOP to the software interface between the

device drivers and the control software for mechatronic projects. In this narrowly defined area, we are not aware of any
similar works. However, prior publications in the areas of object-oriented programming (OOP) and the C++ programming
language, OOP applied to control system design, and OOP applied to robotics projects are closely related precursors to our
work. Here we review a representative sampling of these works.

Object oriented programming is a topic of much discussion and progress in the last few years. The advantages of OOP
over more traditional structured programming methods is by now well documented 2, 3. Although object oriented design can
be implemented using several different programming languages, C++ is the language of choice4, 5 for most of the literature
that we have reviewed because of its many built-in features which facilitate OOP. As will be seen in Section 4, the salient
characteristics of actuators and sensors can be mapped directly to member variables and member functions of object classes
in C++ by application of the object oriented paradigm.

For the realization of industrial control systems, Ericsson6 advocates the application of the object-oriented paradigm to
all phases of control system development including functional specification, design, and implementation. He illuminates the
application of an object oriented formalism in translating verbal system specifications into object definitions at a high level
of abstraction. His work does not address individual actuators and sensors.

Pereira7 similarly applies the object oriented paradigm to the development phases of a real-time industrial automation
application. His assignment of physical equipment to software objects encompasses the lowest levels including individual
actuators and sensors. However, his work introduces specific objects as they are needed by the system at hand and does not
develop universal classes which are useful for a spectrum of actuators and sensors as we do. A software layer between the
system hardware and the application software is introduced to perform device driver functions but no special interface is
identified between the device drivers and the control code.

There is a growing list of projects employing OOP technologies in robotics. One of the earliest works was the
development of a Robot Independent Programming Environment8 (RIPE) at Sandia National Laboratories. The RIPE
incorporated a four level programming structure and a hierarchy of generic parent classes. Their device driver level
included such complex devices as bar code readers and gantry robots and so can not be equated to the much simpler, lower-
level device drivers referred to in our work. The object classes within the higher software levels are documented but not for
the lower levels. No generic actuator or sensor classes were published. Further, the interface between the lowest-level device
drivers and the control code is given no special significance.

OOP has been applied to production control systems9. In the referenced work, the objects are intelligent manufacturing
objects each of which represent a complicated piece of production machinary, such as a CNC turning machine. The authors

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

do not model individual actuator or sensors. Their work focuses upon the scheduling, controlling and monitoring of the
manufacturing objects.

Our research differs from these previous works. First and foremost, we are unique in our identification of the device-
driver/control software interface as a boundary between engineering disciplines. As such, the design of the interface
becomes a fundamentally important mechatronic issue. We have gone several steps beyond this realization to arrive at a
universal set of objects (i.e., the UMOs) which can be applied to any mechatronic project to provide a functional, reusable,
intuitive interface layer of software that facilitates system development. Also, our application of the object oriented
paradigm is, in general, at a lower level than is previously documented.

Our results are similar to these previous works insofar as the benefits which accrue through the application of OOP.
Ericsson6 sites the intuition, reusability, useful abstraction, and faster development benefits that accrue. Pereira7 concludes
that information encapsulation, robustness, and reusability are some of the advantages realized. Miller and Lennox8 site the
benefits: reusability, extensibility, reliability and portability. Gausemeier9, et.al. list the advantages of the application of
OOP as flexibility, ability to distribute and scale the system, portability, and reusability.

4. UNIVERSAL MECHATRONIC OBJECTS
4.1 Introduction

We detail the design and application of our set of four UMOs in this section. Section 4.2 delves into a discussion of the
characteristics which are desired for the electrical/control software interface. We review the reasoning which led us to
decide what level of modularity is appropriate for mechatronic objects in Section 4.3. The nomenclature used for referring
to different types of mechatronic objects is explained in Section 4.4. Then in Section 4.5, the UMOs are presented including
complete listings of actual C++ code.

4.2 Desired characteristics for an electrical/control interface
The discussions in Section 2 illuminate some of the characteristics of a good electrical/control subsystem interface.

Here we list all of the characteristics that we have identified to be useful for this interface. The interface should be:
• functional - the code must function as an interface between the electrical and control software subsystems.
• universal - the code must apply to a broad spectrum of actuators and sensors, and their associated electronics.
• modular - the code corresponding to a conceptual entity must be easily manipulated as a single unit.
• intuitive - the code must be easy to understand and apply, providing an appropriate level of abstraction.
• complete - the code should unambiguously define all aspects of the interface.
• concise - the code should incorporate only those features that are typically required in most applications.
• extensible - the code should allow future addition of custom member variables or functions.
• efficient - a reasonable attempt should be made to avoid excessive computational overhead.
• compact - a reasonable attempt should be made to avoid excessive memory requirements.

It should be noted that reuseablity derives directly from the universal and modular characteristics of the code.
Reusability is the practical benefit that accrues when the code embodies both universal and modular characteristics.
Similarly, rapid development and maintainability are practical benefits that result from the modular, concise, and intuitive
characteristics of the code.

4.3 What are the objects?
The applicability of OOP techniques to a particular problem can be ascertained by the amount of commonality between

the concepts in the problem space. It is, therefore, useful to identify the concepts and the commonalities involved in the
device-driver/control software interface. Figure 2 depicts the generic interconnection of actuators and sensors within a
mechatronic system.

Actuators, such as motors, solenoids, speakers, relays, LEDs, and valves receive controlled power for their operation by
driver electronics of some type. For a DC servo motor, this may be a large, complex motor amplifier. For an LED, the drive
electronics may consist simply of a current-limiting resistor. In order for the computer software to control the actuator, an
output circuit is used. For motor amplifiers that require an analog voltage command, the output circuit would be a DAC. If
the actuator is an LED or a relay, the output circuit would be a DIO.

In an analogous fashion, sensors, such as switches, temperature, pressure, humidity, position, velocity, acceleration and
force sensors require filter electronics and an input circuit. For example, a shaft encoder requires a quadrature
decoder/counter in order to count the number of pulses generated by the encoder. In this case, the input circuit is a DIO

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

channel consisting of 8 or more parallel bits. For a microswitch, the filter electronics may consist simply of a current
limiting resistor, and the input circuit is a single DIO bit.

Figure 2: Interconnection of Actuators and Sensors within a Mechatronic System

The concepts that we select to be objects in our code should correspond to the concepts which have commonality that
can be exploited to our benefit. Suppose we select a motor to be an object. The electrical interface to a motor consists of
wires connected to its internal coils. A brushed motor has one set of two wires. A three-phase brushless motor may have 3, 4
or 6 input wires depending upon how it is internally wired. A stepper motor may have 4, 6 or 8 wires. We could similarly
list differing control functions required by different motors. Clearly there is not much commonality evident in the selection
of a motor as an object. The same is true if we were to select a specific sensor, such as an encoder, as an object.

Now consider grouping the drive electronics with the motor as an object. An amplifier for a brushless DC motor and
one for a brushed DC motor may both accept DC analog voltages in the range -10V to 10V as inputs. Thus, we have more
commonality at this level of abstraction than when assigning motors and encoders as objects. However, there are other
difficulties at this level. Some DC servo motor amplifiers require digital inputs, some stepper motor drivers require a step
bit and a direction bit, and others require a serial RS232 connection to command the motor. If we were to group individual
sensors with their respective filter electronics, we would similarly find that some produce analog outputs in various
configurations and others provide various configurations of digital outputs. We must conclude that this level of abstraction
is also inadequate.

Consider grouping together the combination of a specific motor, drive electronics, and output circuit and call this an
object. The interface to this object is now at the level of memory-mapped input/output circuitry. The command for an LED,
solenoid, or valve is a single output bit. The command for a stepper motor is a set of bits. The command for a DC servo
motor, brushed motor, AC motor or any other motor is a set of bits. By grouping a sensor with its filter electronics and input
circuit we similarly find that in all cases the interface is a set of bits. This is a natural consequence of the fact that actuators
and sensors are memory-mapped within the computer and thus accessed by reading and/or writing to memory locations. For
this reason, there is a great deal of commonality at this level of abstraction. We have chosen to use this level of abstraction
for our UMOs.

Listing 1: Common Type Definitions
//common.h
#ifndef COMMON_H
#define COMMON_H

typedef enum {ZERO, ONE, ON, OFF, RIGHT, LEFT, UP, DOWN, HIGH, LOW, FRONT, BACK,\
 CW, CCW, ENABLE, DISABLE, PASS, FAIL, COMPLETE, INCOMPLETE} binary_enum;
typedef enum {Z_ENCODER_COUNTER_INPUT, T_ENCODER_COUNTER_INPUT,\
 C_PRESSURE_SENSOR_INPUT, G_PRESSURE_SENSOR_INPUT, Z_MOTOR_DAC_OUTPUT,\
 T_MOTOR_STEP_OUTPUT, T_MOTOR_DIRECTION_OUTPUT, Z_ENCODER_ZERO_OUTPUT,\
 T_ENCODER_ZERO_OUTPUT, C_VACUUM_SOLENOID_OUTPUT, G_VACUUM_SOLENOID_OUTPUT,\
 G_PRESSURE_SOLENOID_OUTPUT, TIMER_INPUT} io_enum;
typedef enum {VOLTS, DEGREES, SAMPLING_PERIODS, MICRONS} units_enum;

#endif COMMON_H

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

4.4 Nomenclature
The following naming conventions will be applied throughout the remainder of the paper to simplify our presentation.

We will refer to the combination of a particular actuator with its associated drive electronics and output circuit simply as an
“actuator”. Likewise, we will refer to the combination of a particular sensor with its associated filter electronics and input
circuit simply as a “sensor”. Using this terminology, we must always be sure to identify all three components when
describing an actuator or sensor. It is not complete to specify that an actuator is a DC motor; because a DC Motor which is
driven by a PWM Amplifier through a single DIO bit requires a different interface than the same motor when it is driven by
an analog amplifier through a DAC. We will use hyphenated notation as a shorthand method for referring to actuator and
sensor configurations. For example, the two actuators just described can be denoted as DIO-PWMamplifier-DCmotor and
DAC-AnalogAmplifier-DCmotor and a typical sensor encountered would be denoted as ADC-LowPassFilter-Microphone.

Listing 2: Universal Mechatronic Object Declarations: Actuators

//ioLib.h
#ifndef IOLIB_H
#define IOLIB_H
#include "common.h"
//---
class binary_actuator
{
private:
 bool is_synchronous; //True if the actuator is synchronous, false if asynchronous
 binary_enum current_command; //If synchronous, the most recent value commanded
 binary_enum current_value; //Most recent value written to the actuator
 binary_enum default_value; //Value written to the actuator for reset
 binary_enum one_name; //The name for the 1 state, e.g. "on"
 binary_enum zero_name; //The name for the 0 state, e.g. "off"
public:
 io_enum name;
 binary_actuator(io_enum name_parameter, bool is_synchronous_parameter,\
 binary_enum default_value_parameter, binary_enum one_name_parameter,\
 binary_enum zero_name_parameter);
 ~binary_actuator();
 reset(); //Resets asynchronously the actuator
 bool write(binary_enum value); //Commands a value to the actuator
 bool update(); //Writes the most recently commanded value to the actuator
 binary_enum read(); //Returns the value most recently commanded
}; //--
class digital_actuator
{
private:
 bool is_synchronous; //True if the actuator is synchronous, false if asynchronous
 float current_command; //If synchronous, the most recent value commanded
 float current_value; //Most recent value written to the actuator
 float default_value; //Value written to the actuator for reset
 float min_value; //Smallest value that can be commanded to the actuator
 float max_value; //Largest value that can be commanded to the actuator
 float resolution; //Smallest command increment
 float zero_offset; //Command producing zero output
public:
 io_enum name;
 units_enum units; //All values have these units
 digital_actuator(io_enum name_parameter, units_enum units_parameter,\
 bool is_synchronous_parameter, float default_value_parameter,\
 float min_value_parameter, float max_value_parameter,\
 float resolution_parameter, float zero_offset_parameter);
 ~digital_actuator();
 reset(); //Resets asynchronously the actuator
 bool write(float value); //Commands a value to the actuator, returns true if ok
 bool update(); //Writes the most recently commanded value to the actuator
 float read(); //Returns the value most recently written to the actuator
};

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

In practice, software that is written to be easily understandable for accessing actuators which require only one output bit
is significantly different than software that is intuitive for accessing those requiring a group of bits. The difference is that
the binary state of the IO bit for actuators which use only one bit has a logical meaning whereas, for all other actuators the
group of IO bits has a numeric meaning. For this reason, we refer to actuators which require a single output bit as binary
actuators and those requiring a group of output bits are referred to as digital actuators. Similarly, Sensors requiring only
one input bit are referred to as binary sensors and those requiring a group of input bits are digital sensors. In Section 4.5, it
will become apparent why the software for a binary device is different from that for a digital device.

Our set of four UMOs (i.e., the binary actuator, digital actuator, binary sensor and digital sensor) is sufficient for
modeling all devices which have a single interface value, for this reason we refer to this set of four mechatronic objects as
the atomic objects. Some devices must be modeled as an combination of atomic objects. For example, a DIO-StepperDrive-
StepperMotor actually requires two binary actuator objects, one binary actuator acts as the step signal and the second binary
actuator acts as the direction signal. Another example would be a servo axis consisting of a DAC-Amplifier-DCmotor for
axis drive and a DIO-QuadratureCounter-Encoder for axis feedback. We refer to mechatronic objects such as these which
are formed as the combination of other mechatronic objects as compound objects.

Listing 3: Universal Mechatronic Object Declarations: Sensors
//ioLib.h continued

//---
class binary_sensor
{
private:
 bool is_synchronous; //True if the sensor is synchronous, false if asynchronous
 binary_enum current_value; //the most recent value read
 binary_enum one_name; //the name for the 1 state, e.g. "on"
 binary_enum zero_name; //the name for the 0 state, e.g. "off"
public:
 io_enum name;
 binary_sensor(io_enum name_parameter, bool is_synchronous_parameter,\
 binary_enum one_name_parameter, binary_enum zero_name_parameter);
 ~binary_sensor();
 binary_enum read(); //Reads a value from the sensor
 bool sample(); //Reads directly from the sensor and stores in current_value
 reset(); //Resets asynchronously the sensor
}; //--
class digital_sensor
{
private:
 bool is_synchronous; //True if the sensor is synchronous, false if asynchronous
 float current_value; //If synchronous, most recent value read
 float min_value; //Smallest value that can be read
 float max_value; //Largest value that can be read
 float resolution; //Smallest value change that can be read;
 float zero_offset; //Value read corresponding to zero
public:
 io_enum name;
 units_enum units; //All values have these same units
 digital_sensor(io_enum name_parameter, units_enum units_parameter,\
 bool is_synchronous_parameter, float min_value_parameter,\
 float max_value_parameter, float resolution_parameter,\
 float zero_offset_parameter);
 ~digital_sensor();
 float read(); //Reads a value from the sensor
 bool sample(); //Reads directly from the sensor and stores in current_value
 reset(); //Resets asynchronously the sensor
}; //--
#endif //IOLIB_H

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

4.5 Mechatronic Object Declarations
We now present and discuss the declaration of the mechatronic objects. Listing 1 is an excerpt from a header file

named common.h because the type declarations therein are common to all of the other files. This listing contains the
enumerated type binary_enum which contains all of the names which may be used to denote the two states of a binary
actuator or binary sensor. The use of words, such as “on” and “off” to represent the two states of a binary actuator is far
more intuitive than the use of the numbers 1 and 0. Similarly, the enumerated type io_enum facilitates the use of intuitive
names for referring to actuators and sensors. We could have used the standard type string for naming them, but the
computational overhead associated with the manipulation of strings is not warranted. The enumerated type units_enum
enables the use of names for specifying the units for actuator and sensor values. This listing was taken from the code for the
z-theta manipulator, so the actual enumerated entries may be different for a different mechatronic system. The use of these
types will become obvious in the following code listings.

Listing 4: Code Structure for Device Drivers
//ioMan.cc
#include "ioMan.h"
#include "common.h"
//---
void IO_initialize(io_enum name_parameter)
{ switch(name_parameter)
 { case FIRST I/O_NAME : INITIALIZATION CODE FOR FIRST I/O ; break;
 case SECOND I/O NAME: INITIALIZATION CODE FOR SECOND I/O ; break;
 :
 case LAST I/O NAME : INITIALIZATION CODE FOR LAST I/O ; break;
 default: cout << "No initialize function for that name." << endl;
};};
//---
void IO_finalize(io_enum name_parameter)
{ switch(name_parameter)
 { case FIRST I/O_NAME : FINALIZATION CODE FOR FIRST I/O ; break;
 case SECOND I/O NAME: FINALIZATION CODE FOR SECOND I/O ; break;
 :
 case LAST I/O NAME : FINALIZATION CODE FOR LAST I/O ; break;
 default: cout << "No finalize function for that name." << endl;
}; };
//---
void IO_reset(io_enum name_parameter)
{ switch(name_parameter)
 { case FIRST I/O_NAME : RESET CODE FOR FIRST I/O ; break;
 case SECOND I/O NAME: RESET CODE FOR SECOND I/O; break;
 :
 case LAST I/O NAME : RESET CODE FOR LAST I/O ; break;
 default: cout << "No reset function for that name." << endl;
}; };
//---
long IO_read(io_enum name_parameter)
{ switch(name_parameter)
 { case FIRST SENSOR NAME: READ CODE FOR FIRST SENSOR; return(VALUE);
 case SECOND SENSOR NAME: READ CODE FOR SECOND SENSOR; return(VALUE);
 :
 case LAST SENSOR NAME: READ CODE FOR LAST SENSOR; return(VALUE);
 default: cout << "No read function for that name." << endl; return(0);
}; };
//---
void IO_write(io_enum name_parameter,long value_parameter)
{ switch(name_parameter)
 { case FIRST ACTUATOR NAME: WRITE CODE FOR FIRST ACTUATOR; break;
 case SECOND ACTUATOR NAME: WRITE CODE FOR SECOND ACTUATOR; break;
 :
 case LAST ACTUATOR NAME: WRITE CODE FOR LAST ACTUATOR; break;
 default: cout << "No write function for that name." << endl; break;
}; };

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

Listing 2 displays the declaration of binary and digital actuators. Listing 3 displays declarations for binary and digital
sensors. Taken together these two listings form the basis for all mechatronic objects.

Looking at the class binary_actuator , we find six private member variables. These member variables are private,
meaning that they can not, and need not, be accessed by any of the device driver or control software. The Boolean variable
is_synchronous is either true or false indicating whether or not the particular actuator should be commanded
synchronously each sampling period, or should be commanded immediately whenever the write function is called. The
member variable current_value stores the last value that was written using the write function. One_name and
zero_name are the names of the states corresponding to 1 or 0 binary values. The default_value is the name of the
state in which the actuator will be initialized or reset to. The remaining variable, current_command , is the value that
was last commanded to the actuator hardware. Note that if the actuator is asynchronous, the current_command will be
assigned the current_value as soon as the write function is called. Whereas, a synchronous actuator will not change
its current_command until the next time update is called, even if write has been called one or more times.

The only public member variable is the actuator’s name. The name is used within the device drivers to make the
proper correspondences between device driver code segments and mechatronic objects. The member function having the
same name as the class, binary_actuator , is called the constructor according to C++ terminology. This is the function
that gets called when the user declares a new object of this class, which explains why one parameter for each of the member
variables is passed to the function. Upon calling the constructor a new object is created and the member variables are
assigned to be equal to the parameters passed. The actuator is also initialized when the constructor is called. The function
~binary_actuator is the destructor. This function is called to free up the resources allocated to the object after it is no
longer needed. The function reset simply calls the device driver code segment io_reset which typically sets the value
of the actuator to its default value, but may be programmed by the electrical developer for other duties as well. The function
update commands the current_value to the actuator hardware and thus only applys to synchronous actuators. The
write function gives the actuator a new value and returns true if it was successful. The read function returns the value of
current_command .

The private member variables for the digital actuator differ from those of the binary actuator by the lack of one_name
and zero_name and the addition of min_value , max_value , resolution , and zero_offset . Min_value and
max_value correspond respectively to the minimum and maximum values that can be commanded to the actuator. The
variable resolution denotes the command change corresponding to a one bit change. The zero_offset is the value
that must be commanded to the actuator to obtain a zero response. There is one additional public member variable called
units whose meaning is self-evident. The ability to specify the units of the actuator commands allows the control
developer the ability to program using the units which are best suited for each particular actuator. Whereas all values within
a binary_actuator are of type binary_enum and are interpreted using the specified values of one-name and
zero-name , all values within a digital_actuator are of type float and are interpreted according to the units
member variable.

A binary sensor is declared similar to a binary actuator except that no default_value or command_value are
needed. Sensors do not have a write function nor an update function. In contrast, a sample function is included which
applies only to synchronous sensors. The read function only reads the state of the actual hardware if the sensor is declared
as asynchronous. Otherwise a call to read will return the current_value ; the current_value itself will not be set
from the actual hardware until the next execution of the sample function. Digital sensors behave like binary sensors
insofar as sampling and reading are concerned, and like digital actuators in the way that units are used.

It is worth mentioning that the four classes could be declared hierarchically with a device class having the member
variables is_synchronous and name and the function reset , because these are common to all the classes. Derived
from the parent device class could be binary_device and digital_device classes which respectively declare additional
commonalities. Then at a third level, the four atomic objects could be declared with only the member variables and
functions not already declared by their respective parent classes. We have chosen not to make the declarations in such a
hierarchical fashion because it has been reported10 that the use of inheritance in this way incurs additional processor
overhead that degrades the real-time performance, and because it tends to make the classes less intuitive. However, the user,
at his discretion could rewrite the classes hierarchically and still enjoy all of the other benefits described in this paper.

The declarations for the mechatronic objects should be included in the control developer’s code. The electrical
developer has a different interface to deal with. In order for the mechatronic objects to access the device drivers properly,
the device drivers must adhere to the simple format shown in Listing 4. The electrical developer must program four device

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

driver code segments for each atomic actuator or sensor. Three of the required code segments are IO_initialize ,
IO_finalize , and IO_reset . Additionally, for each actuator he must provide IO_write and for each sensor he must
provide IO_read . Once written, these code segments are simply inserted into the appropriate case statements shown in
Listing 4. The code segment IO_initialize prepares an atomic object for use. Conversely, IO_finalize performs
any tasks which are required when the object is retired from use.

Early in the development of a mechatronic system the integrator must declare each of the actuators and sensors in the
system as an object. Compound objects must be modeled as an combination of atomic objects. For example, a servo axis
might consist of a D/A-Amplifier-DCmotor for axis drive and a DIO-QuadratureCounter-Encoder for axis feedback. A
compound object is declared by aggregating its component objects as will be shown in Section 5. One way to understand the
roles of atomic and compound objects is by analogy with C++ types. The C++ language provides built-in types which can be
applied directly, such as char , int and float . The user then is able to aggregate multiple chars, ints or floats within a
struct to model compound data structures. Analogously, the UMO provides four built-in atomic objects (binary_actuator,
digital_actuator, binary_sensor and digital_sensor) and the user is able to aggregate atomic objects in order to model
combinations of these.

Once they are declared, each actuator (sensor) will inherit all of the member variables and functions defined by the
UMO. This provides a powerful standard interface for use by the control developer even before any device drivers are
written. In other words, the UMO’s provide an abstraction for the control developer which allows the computer control
software to be written in a portable, hardware-independent manner. Further, the electrical developer can compose the device
drivers and format them to interface with the UMO’s in a straightforward standard way as well. Thereby, the UMO’s
provide an abstraction for the electrical developer which allows the device driver software to be written in an application-
independent manner. Central to the advantages of UMOs is the ability of the electrical and control developers to proceed
with the development of their respective subsystems independently and in parallel. We propose that in practice this will
result in a reduction in the total time for system development when compared with the traditional practice of not clearly
defining this interface at all.

Figure 3: Photograph and Block Diagram of the Prototype Z-Theta Manipulator

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

5. CASE STUDY: Z-THETA MANIPULATOR
5.1 Minifactory Overview

Minifactory11 is an on-going project within the Microdynamic Systems Laboratory in the Robotics Institute at Carnegie
Mellon University. The goal of the project is to develop a modular system for automated precision assembly. The system
concept centers around the operation of small table-top courier robots which carry subassemblies from one overhead
processing station to another so as to realize the assembly of a product. It is envisioned that most processing stations will
incorporate a z-theta manipulator for manipulation of parts. We have applied the UMOs described in this report to the
control of a prototype z-theta manipulator.

5.2 Overhead Manipulator Hardware
Figure 3 shows a photograph and a block diagram of the major mechatronic components of our prototype z-theta

manipulator. The control computer is a PowerPC running the Lynx real-time operating system. There is a carrier card
plugged into the PC that allows the installation of up to 6 Industry Pack (IP) interface circuits. We utilize timer, digital to
analog converter, digital input/output, analog to digital converter, and quadrature counter IP modules.

The z-axis has an associated servo motor, motor driver, and encoder with zero pulse. The theta-axis has an associated
stepper motor1, stepper driver with step and direction inputs, and encoder. There is a pneumatic counterbalance cylinder
with an associated pressure sensor and vacuum solenoid. Gripping of parts is accomplished by an end-mounted suction cup
which has an associated vacuum solenoid and pressure sensor for gripping parts, and a pressure solenoid for releasing parts.
Note that the video camera in the photograph was connected directly to a video monitor for part viewing and is not
considered in the following discussion.

Figure 4: Heirarchy of Mechatronic Objects for the Z-Theta Manipulator

1 Because the prototype manipulator was intended as a testbed for control and application software development, this step motor and
step/direction driver configuration was sufficient. However, a dc motor with PWM amplifier is planned for our second-generation
manipulator design to enable more precise positioning.

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

5.3 Overhead Manipulator Objects
A straightforward mapping of actuators, sensors and their associated electronics and interface circuits to objects using

the UMOs was performed and the results are diagrammed in Figure 4. Atomic actuators are diagrammed by rectangles,
atomic sensors as ovals, and compound objects as rounded rectangles. It is evident that most of the objects are declared as
atomic objects. Four compound objects are associated with the z, theta, counterweight, and gripper control groups. The
remaining compound object represents the entire manipulator and aggregates both atomic and compound objects.

Notice that there is not a one-for-one mapping of hardware devices and objects. The DIO-QuadratureCounter-Encoder
on the z-axis has two objects associated with it. One is a digital sensor representing the encoder count and the other is a
binary actuator representing the control bit that allows the quadrature counter to zero when a zero pulse is detected by the
encoder. Similarly, the DIO-StepperDriver-StepperMotor on the theta-axis requires one binary actuator to represent the step
input and a second binary actuator to represent the direction bit. It would not be proper to declare the DIO-stepperDriver-
StepperMotor as a 2-bit digital actuator because the two control bits do not represent the numeric value of a control signal.
Notice that the counterweight pressure sensor is modeled as a digital sensor; whereas, the gripper pressure sensor is
modeled as a binary sensor. This is correct because the counterweight pressure sensor has an analog output voltage that is
read using the ADC. The gripper pressure sensor is a two-state threshold device that is read through one bit of the DIO.

The Timer_Input object is a good example of how to use a sensor object to synchronize the software execution to
hardware that produces interrupts. The IO_initialize device driver segment for Timer_Input sets up a counter to
produce interrupts every sampling period; in this case every millisecond. The read function of the Timer_Input can be
called from the control software using the C++ line of code: missed=Overhead_Manipulator.timer->read().
This line of code causes the IO_read device driver segment for Timer_Input to run. The IO_read segment blocks,
allowing other processes to run, until an interrupt from the timer occurs, then it simply returns a zero to the calling
software. If at least one interrupt has already occurred since the last time read was called, the function returns
immediately with an integer representing the number of interrupts which were missed. Thus, even though there is no
physical sensor involved in sampling period timing, a digital sensor object can be used to interface with the timer.

Listing 5: Declarations of Mechatronic Objects for the Overhead Manipulator

digital_actuator z_motor_dac_output(Z_MOTOR_DAC_OUTPUT,VOLTS,true,\
 0.0,10.0,10.0,(10.0/2047.0),0.0);
binary_actuator t_motor_step_output(T_MOTOR_STEP_OUTPUT,true,DOWN,UP,DOWN);
binary_actuator t_motor_direction_output(T_MOTOR_DIRECTION_OUTPUT,true,CW,CW,CCW);
binary_actuator z_encoder_zero_output(Z_ENCODER_ZERO_OUTPUT,false,DISABLE,ENABLE,DISABLE);
binary_actuator t_encoder_zero_output(T_ENCODER_ZERO_OUTPUT,true,DISABLE,ENABLE,DISABLE);
binary_actuator c_vacuum_solenoid_output(C_VACUUM_SOLENOID_OUTPUT,true,OFF,ON,OFF);
binary_actuator g_vacuum_solenoid_output(G_VACUUM_SOLENOID_OUTPUT,true,OFF,ON,OFF);
binary_actuator g_pressure_solenoid_output(G_PRESSURE_SOLENOID_OUTPUT,true,OFF,ON,OFF);
digital_sensor z_encoder_counter_input(Z_ENCODER_COUNTER_INPUT,MICRONS,true,\
 55000.0,129000.0,4.64357,-147871.0);
digital_sensor t_encoder_counter_input(T_ENCODER_COUNTER_INPUT,DEGREES,true,\
 -270.0,270.0,0.000529483,227.4438);
digital_sensor c_pressure_sensor_input(C_PRESSURE_SENSOR_INPUT,VOLTS,true,\
 0.0,1000.0,1.0,0.0);
digital_sensor timer_input(TIMER_INPUT,SAMPLING_PERIODS,false,0.0,99999.9,1.0,0.0);
binary_sensor g_pressure_sensor_input(G_PRESSURE_SENSOR_INPUT,true,FAIL,PASS);
dfdf_config z_axis(&z_motor_dac_output,&z_encoder_counter_input,&z_encoder_zero_output);
bfdf_config1
t_axis(&t_motor_step_output,&t_encoder_counter_input,&t_motor_direction_output,\
 &t_encoder_zero_output);
bfdf_config2 counterweight(&c_vacuum_solenoid_output,&c_pressure_sensor_input);
bfbf_config g_vacuum(&g_vacuum_solenoid_output,&g_pressure_sensor_input);
manipulator overhead_manipulator(&z_axis,&t_axis,&counterweight,&g_vacuum,\
 &g_pressure_solenoid_output,&timer_input);

5.4 Overhead Manipulator Software
Listing 5 shows the actual declarations of these objects. The compound objects in the system must be customized. One

representative example is shown in Listing 6. The remaining compound objects are not included for lack of space, but can
be reproduced easily using the one listed as an example. The compound objects only require three member functions:

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

reset , update and sample . Each of these functions simply calls the functions of the same name for each of its
components. For example, the update member function for Overhead_Manipulator simply calls the update
functions for its components which are or which contain actuators: Z-Axis , Theta_Axis , Counterweight ,
G_vacuum, and G_Pressure_Solenoid_Output . In this way, one call to the function
overhead_manipulator.update will recursively update all the actuators in the system. Similarly, all of the sensors
can be sampled using overhead_manipulator.sample .

Listing 6: One of the Compound Objects for the Z-Theta manipulator

class bfbf_config //binary_feedforward_binary_feedback_configuration
{public:
 binary_actuator* feedforward_device;
 binary_sensor* feedback_device;
 bfbf_config(binary_actuator* feedforward_device_parameter,\
 binary_sensor* feedback_device_parameter);
 update();
 sample();
 reset(); };

The complete set of manipulator objects forms the foundation for the control and application code for the system. One
way to write modular control functions would be to develop the control functions as member functions of the appropriate
mechatronic objects. For example, a function that steps the theta motor one step would be a member function of the object
T_Motor_Step_Output. A function that returns the motor to a specific position would require access to the theta motor step
and direction and the encoder, so it would be written as a member function of the theta_axis object. In this manner, the
hierarchical organization of the mechatronic objects can be used to organize the control functions as well.

6. DISCUSSION
We have developed a set of four software objects, collectively referred to as Universal Mechatronic Objects, which

provides the foundation for the development of control and application software for any mechatronic system. The flexibility
of the UMOs to model a spectrum of actuators and sensors derives from the observation that, at the lowest level, actuators
and sensors are accessed by the computer as memory-mapped IO devices. There is a close intuitive correspondence between
actual hardware components and the mechatronic objects which facilitates rapid development and easy maintenance of the
control software. The UMOs encapsulate the interface between the device-drivers and the control software providing an
abstraction to the control developer which is hardware-independent, and thereby facilitating the portability and reuseability
of the control code. We envision that this property may allow future systems to generate control code automatically.
Consistent application of UMOs across several different mechatronic systems will allow software authors and maintainers to
develop a familiarity with the objects which can further improve their efficiency, in contrast to the current tendency to
develop custom code for each new system.

We have argued that the application of UMOs lead to many desired benefits during the development of a mechatronic
system. Quantifiable results are difficult to obtain due to the nature of the benefits. In order to further this work, we are
disseminating the UMOs to the interested users. We were unable to include the entire source code for the definitions of the
UMOs in this paper because of a lack of space. Moreover, reuse of the code from hardcopy is time consuming and error
prone. To facilitate the widespread use of UMOs we will make them and other associated code accessible over the internet
at www.cs.cmu.edu/~muir/mechatronics.

7. ACKNOWLEDGEMENTS
This work has been supported by the National Science Foundation under grants DMI-9523156 and DMI-9527190. We

would like to thank Ralph Hollis, Minifactory project lead and head of the Microdynamic Systems Laboratory, for his
helpful suggestions and support over the course of this work. We would also like to acknowledge Ben Brown for the
electromechanical design and construction of the z-theta manipulator and Al Rizzi for the PowerPC setup and the coding of
the low-level device drivers for the z-theta manipulator.

To appear: Proceedings of the 1998 SPIE International Symposium on Intelligent Systems and Advanced Manufacturing:
Mechatronics Conference, November 5, 1998, Boston.

8.REFERENCES
1. P.F. Muir, “The Growing Role of Mechatronics in System Realization,” SPIE’s International Technical Working

Group Newsletter: Robotics and Machine Perception, Volume 7, Issue 2, August 1998, pp. 4-5.
2. D.G. Firesmith, Object-Oriented Requirements Analysis and Logical Design, John Wiley & Sons, New York, 1993.
3. T. Love, Object Lessons: Lessons Learned in Object-Oriented Development Projects, Sigs Books, New York, 1993.
4. B.R. Rao, C++ and the OOP Paradigm, McGraw-Hill, Inc., New York, NY, 1992.
5. B. Stroustrup, The C++ Programming Language, Third Edition, Addison-Wesley, Reading, MA, 1997.
6. G. Ericsson, “Functional Specification of Industrial Control Systems: An Object-Oriented Approach,” Proceedings of

the Third IEEE Conference on Control Applications, Glasgow, Scotland, UK, August 1994, pp. 1347-1352.
7. C.E. Pereira, “Applying Object-Oriented Concepts to the Development of Real-Time Industrial Automation Systems,”

Proceedings of the Third Workshop on Object-Oriented Real-Time Dependable Systems, 1997, pp. 264-270.
8. D. J. Miller and R.C. Lennox, “An Object-Oriented Environment for Robot System Architectures,” Proceedings of the

1990 IEEE International Conference on Robotics and Automation, pp. 352-361.
9. J. Gausemeier, K.H. Gerdes and S. Leschka, “Cell Control by Intelligent Objects: A New Dimension of Production

Control Systems,” Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and Systems,
Munich, germany, September 1994, pp. 47-55.

10. G. Glass and B. Schuchert, The STL Primer, Prentice Hall PTR, NJ, 1995.
11. R.L. Hollis and A. Quaid, “An Architecture for Agile Assembly,” American Society of Precision Engineering 10th

Annual Meeting, Austin, TX, October 1995.

