
Diploma Thesis

Teleoperated Microassembly: Combining
the Magnetic Levitation Haptic

Interface with Minifactory

Michael Kummer

Dr. Ralph Hollis
Carnegie Mellon University

The Robotics Institute
Microdynamics Systems Laboratory

5000 Forbes Ave, Pittsburgh, PA 15213
Adviser

Prof. Dr. Bradley J. Nelson
Institute of Robotics and Intelligent Systems

Swiss Federal Institute of Technology Zurich (ETH)
Tannenstrasse 3
CH-8092 Zurich

2005-05

Preface i

Preface

I would like to thank Prof. Dr. Bradley Nelson and Dr. Ralph Hollis for giving me

the opportunity to write my diploma thesis at the Robotics Institute at Carnegie

Mellon University. I would further like to thank Dr. Ralph Hollis and Prof.

Alfred Rizzi for their support and guidance during my time working at their lab.

Many thanks also to Rob Schlender and Bert Unger for their support with UNIX,

programming, the minifactory, and the Magnetic Levitation Haptic Interface.

Contents ii

Contents

List of Tables iv

List of Figures iv

Abstract v

Zusammenfassung vi

1 Introduction 1

1.1 Problem Specification . 2

2 AAA, Minifactory, and Magnetic Levitation Haptic Interface 3

2.1 The Architecture for Agile Assembly 4

2.2 The Minifactory Environment . 5

2.3 The Magnetic Levitation Haptic Interface 10

2.4 Force Sensor . 11

3 Hardware Setup & Communication 14

3.1 Hardware Setup . 14

3.2 Communication . 16

4 Control of the Minifactory with the Magnetic Levitation Haptic

Interface 20

4.1 Magnetic Levitation Haptic Interface 20

4.2 Controller in the Minifactory . 20

4.3 General Problems with the Presented Setup 22

4.4 Control . 24

5 Summary and Contributions 34

5.1 Future Work . 34

References 37

Contents iii

A Communication Code 40

A.1 Endian Swapping Code . 40

A.2 Communication Thread on The Magnetic Levitation Haptic Inter-

face Controller . 42

A.3 Controller Code for the OHM with Impedance Control 47

B Running and Terminating the Demos 57

C Building Your Own Copy 60

List of Tables iv

List of Tables

1 Gains and scaling factors of the PD position controller of the OHM. 27

2 Force scaling factors. 28

3 Parameters for impedance control of the OHM. 33

List of Figures

1 Minifactory at MSL. 3

2 Magnetic Levitation Haptic Interface at the MSL. 4

3 Minifactory Elements . 6

4 Courier . 7

5 The Overhead Manipulator . 8

6 Exploded view of OHM offset arm. 8

7 Current Minifactory configuration at MSL 10

8 Magnetic Levitation Haptic Interface 12

9 3-Axis Force Sensor . 13

10 Schematic of the communication and hardware setup. 14

11 Network timing between minifactory and OHM. 19

12 Controllers and communication in the minifactory. 21

13 Agents’ base-frames and end effector/force sensor coordinate frame. 22

14 Splitting up the information sent from the Magnetic Levitation Hap-

tic Interface to the minifactory. 23

15 Factory and Force Sensor Coordinate Frames. 24

16 New communication and control architecture 24

17 θ- and z- Positions for Unilateral Control 26

18 θ- and z- Positions for Bilateral Control with Large Scaling Factors 29

19 θ- Positions for Bilateral Control with Improved Scaling Factors . . 30

20 θ- and z- Positions for Bilateral Control Using an Impedance Con-

troller . 32

21 Control Problematics . 35

22 Terminals needed to run Demos. 57

Abstract v

Abstract

This thesis describes a technique for teleoperated microassembly. To reach this

goal, the minifactory is combined with the Magnetic Levitation Haptic Interface,

which were both developed at the Microdynamic Systems Laboratory at Carnegie

Mellon University. The minifactory is a system intended for the autonomous as-

sembly of MEMS parts such as hearing aids or magnetic storage devices. The Mag-

netic Levitation Haptic Interface is a 6-DOF haptic device based on the Lorentz

force actuation. The combination of the two technologies shall yield a means to

remotely control the minifactory as well as a feasibility estimate to determine to

what extent this combination can provide improved alternatives to todays manual

microassembly. This thesis illustrates both technologies, describes the communica-

tion setup between the involved hardware components, and addresses the control

issues underlying this task.

Zusammenfassung vi

Zusammenfassung

Diese Diplomarbeit beschreibt das Ausarbeiten einer ferngesteuerten Mikromontage-

Technik. Um dieses Ziel zu erreichen werden die “Minifactory” und das “Mag-

netic Levitation Haptic Interface” in einem System integriert. Beide Technolo-

gien wurden am Microdynamic Systems Labor an der Carnegie Mellon Univer-

sität entwickelt. Die Minifactory ist ein System welches für die automatisierte

Montage von MEMS-Teilen, wie z. B. Hörhilfen oder magnetische Speichergeräte

entwickelt wurde. Das Magnetic Levitation Haptic Interface ist eine haptische

Mensch/Maschine Schnittstelle mit 6 Freiheitsgraden. Es basiert auf dem Prinzip

der Lorentz Kraft. Die Kombination dieser beiden Geräte soll einem Benutzer

ermöglichen die Minifactory fernzusteuern. Gleichzeitig wird ermittelt in welchem

Mass dieses System eine Verbesserung zu herkömmlicher, manueller Mikromon-

tage bietet. In dieser Diplomarbeit werden alle Bestandteile des Aufbaus, die

Verbindung zwischen den einzelnen Bestandteilen und die Steuerung des Systems

beschrieben.

1 Introduction 1

1 Introduction

After several decades of mass-production, changing marketplace requirements have

forced manufacturers to be more adaptable to unknown market requirements. Buz-

zwords such as Six Sigma, Continuous Improvement, Lean Manufacturing, Agile

Manufacturing and so forth have started to influence the industry on a strategic as

well as a manufacturing level. The premise of these ideologies is to direct compa-

nies into a position that will allow them to remain competitive in a fast changing

market environment.

Especially in the high-tech industry which increasingly relies on microassem-

bly, the requirements on products drive manufacturers to change their production

strategies. Shorter product life cycles [1] and smaller sets of produced parts require

production sites to be capable of adapting to changing marketplace requirements

faster and in a more flexible fashion. This claim for agility encourages the de-

velopment of highly modular factories. Furthermore, an increase in automation

and autonomy would improve the microassembly production in a domain where

scale and environmental issues make it desirable to eliminate humans from the

production process.

Increased autonomy and automation, however, cannot eliminate the necessity

for human operators to be able to take control of the situation in the occurrence

of unpredicted events. Operator interaction must be possible to aid the factory.

The human supervisor is supposed to resolve problems that the factory cannot

overcome by itself. If such a problem was to occur in a sterile factory environ-

ment, it would be beneficial if the operator could fix the problem from outside

the factory environment. In case of a larger breakdown, it would be convenient if

finished assemblies could at least be remotely recovered before the intact factory

environment would be entered.

When a limited set of assemblies does not make the design and programing of

a factory profitable, currently the prevailing alternative is manual microassembly.

The possibility to manually control a microassembly factory could render a power-

ful alternative to traditional, manual microassembly. Fatiguing work on a precision

microscope could be replaced by a more comfortable and thus productive process,

since the same work could be performed while sitting in front of a computer mon-

1.1 Problem Specification 2

itor using an ergonomic interface device. Furthermore, the operator could teach

the factory a combination of movements, which the factory could learn after few

repetitions and eventually could perform on its own. A haptic device is an ideal

device to introduce in a factory built to perform microassembly. The reflection of

involved forces is a key issue since the manipulated parts are so small and frag-

ile. A haptic interface device enables manual interactions of humans with virtual

environments or teleoperated remote systems using sense of touch [2]. Other ben-

efits of using a haptic interface device for teleoperated microassembly are higher

resolution and better control of the applied forces to the delicate assembly parts.

This report describes the effort to combine a microassembly factory and a hap-

tic interface device. The goal is to develop a new system to perform teleoperated

microassembly.

1.1 Problem Specification

The path to develop means of teleoperated microassembly through the combination

of a haptic interface device with a microassembly factory can be structured into

three main steps:

• Establishing the capabilities of all involved hardware in order to understand

the underlying difficulties in trying to combine the haptic interface device

with the microassembly factory.

• Establish communication between the haptic interface device and the mi-

croassembly factory.

• Design appropriate controllers for both the haptic interface device and the

microassembly factory in order to operate the newly created setup.

2 AAA, Minifactory, and Magnetic Levitation Haptic Interface 3

2 AAA, Minifactory, and Magnetic Levitation Haptic Interface

Rapidly changing marketplace requirements impose agility demands on microassem-

bly factory systems. Today’s factories, however, still lack these abilities and have

unsatisfactory changeover times between the manufacturing of different assemblies

[3]. In combination with shortened product life cycles, this implies that a ma-

jor part of new product cost must be allocated to the design and setup of new

production sites. It would be highly desirable to be able to switch between the

production of different assemblies within days. The minifactory at the Micrody-

Figure 1: Minifactory at MSL.

namic System Laboratory∗ (MSL) at Carnegie Mellon University (CMU) is being

developed in order to address these issues (Fig. 1). The minifactory targets the

assembly of small electromechanical devices such as storage drives or hearing aids

and is the instantiation of a much broader philosophy, namely, the Architecture

for Agile Assembly (AAA).

Another device developed at MSL is the Magnetic Levitation Haptic Interface.

The Magnetic Levitation Haptic Interface is a haptic device which features 6 DOF

(Fig. 2).

∗http://www.msl.ri.cmu.edu

2.1 The Architecture for Agile Assembly 4

Figure 2: Magnetic Levitation Haptic Interface at the MSL.

The minifactory and the Magnetic Levitation Haptic Interface are the instru-

ments used to develop a teleoperated microassembly system. In this section AAA,

minifactory and its components, and the Magnetic Levitation Haptic Interface are

described.

2.1 The Architecture for Agile Assembly

The Architecture for Agile Assembly (AAA) [3, 4, 5] constitutes a philosophy for

the creation of high-precision, modular, miniature assembly systems. Its goals are

to reduce assembly system changeover times, facilitate geographically distributed

design and deployment of assembly systems, and increase the precision and quality

of products. It aims at providing a solution for industries that would benefit from

drastically reduced factory design and deployment times. Part of the improvement

in factory design, deployment time, and increased portability, results from reducing

the size of typical assembly systems from large room size to tabletop size.

One reason that AAA is so powerful is that a factory built following this philos-

ophy consists of distributed low-DOF robotic modules, called agents. These agents

all are mechanically, computationally, and algorithmically modular manufacturing

entities. They are capable of interacting with each other and thus performing as-

sembly tasks requiring more DOFs than a single agent provides. More importantly,

these modular entities are designed to be part of a larger factory system. This will

make it easier to add and remove agents when changes to the factory need to be

2.2 The Minifactory Environment 5

performed. In order for this distributed behavior to be operative, each agent will

have its own powerful computer. Factory-wide standard procedures and protocols

will further facilitate the implementation of this behavior and will greatly increase

its flexibility.

When short changeover times and high flexibility are a goal, the transition be-

tween a model of a factory and the deployment of this model must be short. In

order to achieve this goal a unified design, simulation, programming, and monitor-

ing interface tool provides the opportunity to design the factory and its processes

on a computer. The real factory then will be programmed by directly interfac-

ing with this automatically synchronized virtual factory [6]. The factory will be

self-calibrating to round off this process and speed up the deployment time.

2.2 The Minifactory Environment

One physical instantiation of the AAA philosophy is called the minifactory [1, 4,

5, 7]. The scope of mechanical capabilities of a minifactory has been limited to

assembly and processing operations requiring four or fewer DOF. This was done

in order to ensure analytic tractability and design practicality. A closer look at

present, industrially meaningful, automated microassembly processes reveals that

they principally consist of four-DOF vertical insertion tasks. This limitation is due

to the fact that no suitable means have yet been developed to efficiently automate

assembly processes requiring more than four DOFs at the micron scale. Most

microassemblies nowadays are designed with this limitation in mind (“design for

assembly”). As long as no efficient high-DOF assembly has been realized, factory

throughput for higher DOF assembly will be limited.

The minifactory consists of modular building blocks to ensure high flexibility.

The biggest block is the base unit frame. It incorporates a modular service bus

that supplies the agents with power, air, vacuum, and network connections. The

base unit supports a platen tile that represents the factory floor. The surface of

the platen tile consists of a waffle-iron type grid that was planarized with epoxy

to yield a flat surface. A base unit and platen can be seen in Figure 3(a). In

a departure from assembly robots such as the SCARA robot arm, predominantly

used for four-DOF vertical insertion tasks, the minifactory splits its four DOFs

2.2 The Minifactory Environment 6

(a) (b)

Figure 3: Figure (a) shows the minifactory base unit comprised
of power and network supply, platen, base frame, and the adjustable
bridge. In (b) the base unit with an OHM (overhead manipulator) and
a courier robot is displayed.

among its various agents. Essentially a coarse distinction can be made between

agents that move over the platen, and agents that are mounted to the modular

and adjustable bridges spanning the factory floor (Fig. 3(b)). Currently, the

minifactory is equipped with the agents displayed in Figure 3(b). These agents

emulate the SCARA’s four-DOF assembly capabilities by appropriately interacting

with each other. The agent that moves over the factory floor is called the courier

robot. The courier is a modified two-axis x, y closed loop planar linear servo

motor (Fig 4). It glides over the factory floor on a 12− 15 µm air bearing and

incorporates a three-DOF x, y, θ alternating current magnetic platen sensor. This

sensor allows for closed loop control and has a linear resolution (1σ) of 0.2 µm

and an angular resolution of 0.0014 ◦ [8]. A precision optical coordination sensor

is also attached to the side of the courier. This sensor detects LED beacons on

the overhead manipulators (OHMs) [9]. This sensor is currently operating at a 1σ

2.2 The Minifactory Environment 7

(a) (b)

Figure 4: (a) Actual picture of courier. (b) Schematic bottom view
of courier displaying motor arrangement.

resolution of 0.15 µm. The courier is actuated by four motors using a magnetic flux-

steering principle. Two motors form a pair along each axis of motion. The motors

have teeth that align with the precision position reference grid of the factory floor.

The courier robots have a double function in the minifactory. First, they carry

the subassemblies through the factory, replacing the commonly used conveyor-belt

configuration. Second, courier robots, together with the OHM, transiently form

four-DOF manipulators.

The OHM is a two-DOF robotic manipulator. It is clamped to the bridges

spanning the factory floor and keeps a fixed base position during operation. Its

two DOFs consist of vertical movement along the z-axis and rotation in θ. Its

travel in the z-direction is about 150 mm and it can rotate for 570 ◦ between

stops in θ (Fig. 5). At the end of the OHM a quick-release connection interface

allows the attachment of different end effectors. Currently, a 100 mm offset arm

is attached which incorporates an end effector/force sensor (Fig. 6). The OHM

design facilitates parts picking from potential, future parts feeders that would be

clamped to the bridges next to their respective OHMs. The OHM has a vertical

resolution of 2 µm and a tangential resolution of 0.9 µm at a 100 mm radius [10].

Sensing and actuation are performed at a servo rate of 2 kHz. Its peak torque is

2.2 The Minifactory Environment 8

(a) (b) (c) (d)

Figure 5: Figure (a) shows a Pro/ENGINEERING drawing of the
OHM without the endeffector arm attached to it. In (b) a schematic of
the OHM is displayed. Figure (c) depicts an OHM in the minifactory
while (d) is a picture of an actual OHM.

1.4 N ·m. Other forms of overhead processors such as screwdrivers, lasers, glue

dispensers and the like are possible expansions of the capabilities of minifactory.

Force Sensor with

Lexan Vacuum Chamber

and Hypodermic Gripper Tube

End Effector

Housing

Figure 6: Exploded view of OHM offset arm.

The configuration of OHM and courier forming the four-DOF manipulator has

several advantages over the commonly used SCARA arm. Since the sensors and

actuators of the agents are collocated in the minifactory, higher precision can be

achieved than with a serial linkage based system. Lower masses of the individual

agents allow for higher accelerations and, thus, reduced process times. Tasks also

can be pipelined between the two robots. While the OHM picks up a part from

2.2 The Minifactory Environment 9

a parts feeder, the courier can move to the assembly location and position itself

appropriately. The mechanical and electrical modularity of the minifactory agents

allows for more flexibility, both in adding new elements to the factory and in

modifying the current setup.

The minifactory has two disadvantages. First, the limited workspace of the

OHM requires parts feeders to be located in close proximity to the OHM. The sec-

ond disadvantage is the movement restriction resulting from the tether connected

to the courier [11]. The tether connects the courier to its brain box. Each agent

has its own brain box which is the computational unit that controls the agent’s

representation towards its peers as well as its function in the entire factory. While

the OHM is fixed to its brainbox, the courier needs to be able to move around the

factory floor. Tether-less couriers are currently still a topic of research and bear

the disadvantage of needing to incorporate their own source of power, network,

and air pressure supply.

Since there is no central program running in a minifactory, distributed pro-

gramming is necessary in this environment [12]. Each agent in a minifactory runs

its own program and needs to display its capabilities to its peers in order to make

cooperation possible. For this reason an agent’s execution is divided into two

levels. At the high-level, Python† scripts control the semantics of factory opera-

tions and the associated discrete events. Low-level processes are responsible for

sequencing and executing the specific control laws. These control strategies are

written in C and C++. While the high-level programs are generated by the user

and downloaded to the agents, the low-level programs are hard-coded in the form

of a palette of real-time controllers and a manager which executes them. The

minifactory relies on two network systems in order to implement its distributed

behavior: a global network and a local network.

The global network works over one of two 100 Mbit interfaces in each agent

brain box. It utilizes standard IP protocols and controls the global behavior of a

factory. It handles factory-wide, non-real time communication and provides the

communication line for the high-level programming.

The local network works over a high speed 100 Mbit connection and uses semi-

custom communication protocols similar to UDP and TCP, but significantly sim-

†An object oriented language which can be interpreted or byte-compiled.

2.3 The Magnetic Levitation Haptic Interface 10

plified to improve performance. The local network, referred to as AAA-Net [13, 14],

is responsible for handling the low level interactions of the minifactory and is a

real-time, low latency network.

The current minifactory setup at the MSL is displayed in Figure 7. It consists

of three complete base units and one base unit that lacks a service bus. Currently

there are four OHMs and two couriers. Each service bus can provide power and

network for eight agents.

Figure 7: Current Minifactory configuration at MSL

2.3 The Magnetic Levitation Haptic Interface

At MSL, a fine motion, magnetically levitated 6 DOF robot wrist, the IBM Magic

Wrist, was adapted for use as a haptic interface device [15]. This early haptic

interface device evolved into the Magnetic Levitation Haptic Interface [16]. The

physics behind the magic wrist and the Magnetic Levitation Haptic Interface in-

volves the concept of actuation through Lorentz force. Lorentz force is generated

when electric currents circulate in a magnetic field. The Magnetic Levitation Hap-

tic Interface consists of a hemispherical bowl, called the flotor, carrying six coils.

The flotor bowl is contained in the stator bowl, which is made up of 12 magnet

2.4 Force Sensor 11

assemblies; six of which are inner, and six of which are outer, magnet assemblies.

One inner and one outer magnet assembly, form a pair that provides the magnetic

field for the corresponding coil on the flotor bowl (Fig. 8). As the flotor bowl sits

in midair when the Magnetic Levitation Haptic Interface is in use, there are no

contact forces due to the actuation. This results in high control bandwidth, low

inertia and simple dynamics for the levitated flotor. The technical specifications of

this device are a motion range between ±7− 10 ◦ in rotational DOF and ±12 mm

in translational DOF. The maximum stiffness is 25 N/mm at a 1500 Hz servo rate.

The maximum force is 55 N and the maximum torque is 6 N ·m. The position sen-

sitivity of the device is between 5− 10 µm. The entire assembly sits in a housing

that also contains the amplifiers that provide the coil current and the circuitry

needed for position sensing (Fig. 2). The computer controlling the haptic device

sits in a separate frame.

2.4 Force Sensor

When trying to perform contact tasks when controlling minifactory with the Mag-

netic Levitation Haptic Interface, it is necessary to provide means of force sensing.

In 2000, DeLuca [17] built and installed a 3-axis force sensor in a minifactory OHM.

The force sensor consists of four load cells that are incorporated into a mechanical

flexure (Fig. 9). The load cells are arranged in such a way that one pair of load

cells is sensitive to only one axis of applied torque. Thus, one pair measures the

torque around the x-axis and one pair measures the torque around the y-axis. The

axes can be seen in Figure 9(b). Torque in θ can be calculated from the horizontal

distance between the OHM’s axis of motion and the force sensor location. The load

cells are modeled as linear springs and thus a linear relationship exists between

the applied forces and torques, and the measured load cell voltages [17]:
V1

V2

V3

V4

 =

α1

β1

ε1
β1

0
α2

β2

ε2
β2

0
η1

δ1
0 ζ1

δ1
η2

δ2
0 ζ2

δ2

︸ ︷︷ ︸

C

 F

Mx

My

 , (2.1)

2.4 Force Sensor 12

position

sensor (3)

outer magnet

assembly (6)

stator bowl

flotor bowl

actuator coil (6)
LED (3)

wiring connector

inner magnet

assembly (6)

interaction handle

(a) (b)

(c)

Figure 8: (a) Cut-away drawing of the Magnetic Levitation Haptic In-
terface assembly. (b) Flotor bowl with magnet assemblies. (c) Finished
Magnetic Levitation Haptic Interface with stator bowl.

2.4 Force Sensor 13

where the Vi represent the load cell voltages and F , Mx and My represent the

force along the z-axis and the moments about the x- and y-axis respectively. Due

to the fact that the load cells only operate in compression, they are preloaded in

the flexure with half the maximum force range.

(a) (b) (c)

Figure 9: 3-axis force sensor: Figure (a) shows a drawing of the
mechanical flexure. In (b) an exploded assembly drawing of the flexure
and the single axis load cells can be seen. The actual hardware is shown
in (c).

The force sensor has a bandwidth of 100 Hz. Once the sensor is incorporated

into the end effector housing it achieves a force sensibility of approximately 78 mN

(1σ) in the z direction and 0.6 mN ·m (1σ) in x and y. A Lexan glass with a

hypodermic gripper tube is mounted on top of the force sensor (Fig. 9(c)). This

end effector can pick and release parts through vacuum.

3 Hardware Setup & Communication 14

3 Hardware Setup & Communication

To combine the Magnetic Levitation Haptic Interface and minifactory in a func-

tional way, different hardware components need to interact. This section covers

the involved hardware components as well as the communication between them.

3.1 Hardware Setup

In addition to the force sensor describe in Section 2, visual sensing is needed to

provide a useful teleoperation setup. It is crucial for the operator of the Magnetic

Levitation Haptic Interface to see what motions he introduces into the minifactory.

A camera was added, to provide visual feedback of the scene. Besides the camera,

an additional four computers were involved in the hardware and communication

setup. These computers were the Magnetic Levitation Haptic Interface controller, a

graphics workstation, the OHM brain box, and the courier brain box. A schematic

drawing of the setup can be seen in Figure 10. What follows is a short description

of the hardware components:

Figure 10: Schematic of the communication and hardware setup.

3.1 Hardware Setup 15

The Magnetic Levitation Haptic Interface Controller is the computer used

to control the Magnetic Levitation Haptic Interface. It runs QNX‡ version

6.1.0 which is a POSIX-conformant Unix-like real-time operating system.

The Magnetic Levitation Haptic Interface controller is equipped with an

Acromag r© APC8620 PCI bus carrier board. This carrier board holds an

IP220 12-bit analog output board, an IP 330 16-bit analog input module and

an IP480 16-bit counter/timer module. This PCI card’s analog input module

will handle the sensor data from the Magnetic Levitation Haptic Interface,

while the analog output board will control the Magnetic Levitation Haptic

Interface’s amplifiers. The processor of this computer is an AMD Athlon XP

2100+ clocked at 1.73 GHz.

The Graphics Workstation, like the Magnetic Levitation Haptic Interface con-

troller, processes computations on an AMD Athlon XP 2100+ processor

clocked at 1.73 GHz. In addition, it has a powerful GeForce4 Ti 4600 graph-

ics card and 1 GB of RAM. This computer will be used to display the image

of the workscene and for any other graphical process. The operating system

on the graphics workstation is RedhatTMLinux, kernel version 2.4.25. Fur-

thermore the computer is equipped with an IEEE 1394 PCI adapter used to

connect the camera.

The Camera used is a digital camera that complies with the IEEE 1394a stan-

dard. It will be attached to the IEEE 1394 bus on the PCI card in the

graphics workstation. Video processing software is required in order to dis-

play a picture of the workspace on the graphics workstation. Coriander§

is a GUI for displaying video input from an IEEE 1394 bus. In order for

the camera to work with Coriander, it needs to be compliant with the IIDC

v 1.04 digital camera specifications. The Coriander version used is version

1.0.0.

The Minifactory Brain Boxes are the OHM computer and the courier com-

puter. The minifactory computers are based on an ATX formfactor Motorola

‡A product of QNX Software Systems, Ottawa, Ontario, Canada
§http://www.tele.ucl.ac.be/PEOPLE/DOUXCHAMPS/ieee1394/coriander/index.html

3.2 Communication 16

MTX-604-003 mother-board with a single 300 MHz Motorola 604e PowerPC

[10]. The operating system on the minifactory brain boxes is LynxOS¶ ver-

sion 3.0.1, which also is a POSIX-conformant real-time operating system.

The minifactory brain boxes are also equipped with an APC8620 PCI bus

carrier board.

3.2 Communication

All of the above mentioned computers are equipped with 100 Mbit Ethernet in-

terfaces and thus connect with each other through the global network.While the

graphics workstation and the Magnetic Levitation Haptic Interface controller both

have a single Ethernet interface, the Minifactory brain boxes have two; one in-

terface for the global network and an additional interface for use with the AAA-

Network.

The communication interface between the Magnetic Levitation Haptic Interface

controller and the minifactory was implemented using the communication libraries

of the RHexLib Control Software. The RHexLib Control Software is a collection

of software libraries used to control the RHex‖ hexapod robot [18]. The RHexLib

communication facilities do not use the TCP/IP messaging protocols. Instead they

are based on the UDP protocol, in which messages are sent to a destination with

no guarantee of receipt. In RHexLib, some simple, but robust, mechanisms have

been implemented on top of UDP to allow some guaranteed message delivery.

The user can choose between using streams or mailboxes. While stream sinks

maintain a queue of the received messages, mailboxes only hold the most recent

message. The RHexLib libraries were used because they provide a simple yet

reliable communication infrastructure. Furthermore, the RHexLib libraries were

used in a prior project where the Magnetic Levitation Haptic Interface was used

to control a PUMA arm. The RHexLib communication libraries were proven to

work well for this teleoperated control task which encouraged their reapplication.

One problem inherent to interfacing the Magnetic Levitation Haptic Interface

controller with minifactory was the endian issue. While the Motorola PowerPCs,

¶A product of LynuxWorksTM, San José, USA
‖http://www.rhex.net

3.2 Communication 17

i.e. the minifactory brain boxes, store their most significant byte at the lowest

address (big-endian format) the Magnetic Levitation Haptic Interface controller

stores its most significant byte at the highest address (little-endian format). In or-

der to work around this problem, byte swapping needed to be done when messages

were sent back and forth between the minifactory and the Magnetic Levitation

Haptic Interface controller. Since the Magnetic Levitation Haptic Interface con-

troller has a faster CPU than the minifactory brain boxes, the byte swapping dur-

ing the data transfer was performed on the Magnetic Levitation Haptic Interface

controller.

In addition to byte swapping a timing issue had to be resolved in order to

achieve acceptable communication bandwidth between the minifactory and the

Magnetic Levitation Haptic Interface. The problem was that the usleep(µsec)

function from the standard gcc library unistd.h, did not provide sufficient resolu-

tion on the minifactory computers or on the Magnetic Levitation Haptic Interface

controller. Thus, the corresponding communication threads could not be reliably

suspended and more than 80% of the sent packets were dropped. The problem was

resolved by using the built in hardware clock featured on the APC8620 card to

time the thread suspension. The byte swapping code as well as the communication

script are displayed in Appendix A.

As shown in Appendix A, the main communication code relies on the mailbox

paradigm; the reason being that messages were sent over the insecure global net-

work. The loss of few packets could be tolerated whereas waiting on lost packets

could cause more severe problems. It was thus necessary to provide a commu-

nication bandwidth that would compensate for the loss of a few packets. The

minifactory is connected to the Global Network through a Cisco Systems Cisco

3000 bridge. This Bridge turned out to be a bottle neck and limited the total

amount of packets that could be sent back and forth between the two agents. A

total of roughly 1000 packets is the limit that can pass by the bridge in one second.

As mentioned earlier in the text the force sensor has a bandwidth of 100 Hz. Fol-

lowing an engineering rule of thumb the force sensors bandwidth should at least be

double to ensure good control performance. For this reason the sending rate from

the OHM to the Magnetic Levitation Haptic Interface was chosen to be 250 Hz.

The sending rate from the Magnetic Levitation Haptic Interface to the OHM was

3.2 Communication 18

then chosen to be 500 Hz. This configuration provided sufficient bandwidth to

perform the targeted tasks. On average 0.5% of the sent packages between the

agents was lost.

The communication was setup so that the OHM initiates the communication

by sending a packet to the Magnetic Levitation Haptic Interface, using the stream

paradigm (Fig. 11). Then the OHM waits until the reception of the sent packet is

acknowledged. The OHM then sends a second message to the Magnetic Levitation

Haptic Interface which contains the OHM mailbox ID. Prior to sending this mes-

sage for the first and only time endian swapping in the OHM communication code

is performed. The mailbox ID is converted from big-endian to little-endian for-

mat in order for the Magnetic Levitation Haptic Interface to correctly understand

the sent mailbox ID. After this initial handshake the stream paradigm will not be

used anymore. The Magnetic Levitation Haptic Interface enters a loop where a

mailer sends the current position of the Magnetic Levitation Haptic Interface to

the OHM. In the same loop a mailbox receives the OHM position information.

On the OHM side, a function gets called periodically in which a mailbox with

the sent mailbox ID receives the position information of the Magnetic Levitation

Haptic Interface. For every other received position information of the Magnetic

Levitation Haptic Interface a mailer on the OHM side sends the current OHM

position and the z-force and torque to the Magnetic Levitation Haptic Interface.

During operation the flotor of the Magnetic Levitation Haptic Interface floats in

midair. Initially the priorities of the communication thread and the position con-

trol thread for the Magnetic Levitation Haptic Interface were set the same. While

the communication thread was waiting for the handshake, however, it starved the

position control thread of the flotor and caused it to become unstable which made

the flotor crash. This problem was eliminated by giving the communication thread

a lower priority than the position control thread.

3.2 Communication 19

Figure 11: Network timing between minifactory and OHM.

4 Control of the Minifactory with the Magnetic Levitation Haptic Interface 20

4 Control of the Minifactory with the Magnetic Levitation Hap-
tic Interface

To design a controller for the minifactory/Magnetic Levitation Haptic Interface

system, it was necessary to understand the existing software and control architec-

tures of the Magnetic Levitation Haptic Interface and minifactory. In this section,

these architectures will be described. Furthermore, the control strategies when

the two systems were combined shall be presented. Mechanical problems with the

courier reduced the initially intended setup. In this section the control of the OHM

with the Magnetic Levitation Haptic interface will be described. Considerations

and problems when adding the courier to the setup will be discussed in Section 5.

4.1 Magnetic Levitation Haptic Interface

The Magnetic Levitation Haptic Interface control runs under the QNX operating

system as mentioned before. QNX allows all threads in a process to see global

variables. This implies that no shared memory structure is needed to make the

data received from the communication thread visible to the control thread. The

process of the control software starts all required auxiliary threads, specified in an

initialization function, prior to starting the flotor position control function. A list

of different controllers is specified in the control function, and depending on the

handled task, the corresponding controller is chosen. For the operation with the

minifactory, two threads, aside from the position control thread, were initialized

on the Magnetic Levitation Haptic Interface. One thread handled local communi-

cation with the keyboard input and served as an emergency control system. The

second thread was the communication thread described in the previous Section.

4.2 Controller in the Minifactory

The minifactory makes use of a hybrid control strategy as described in [19]. A col-

lection of controllers is used where each controller has an associated domain and

goal, to describe the motion of a factory agent. For a minifactory task, the free

configuration space is decomposed into overlapping polygonal regions with param-

4.2 Controller in the Minifactory 21

eterized controllers associated with each region. To achieve the overall goal, the

hybrid control system activates the continuous underlying control policies depend-

ing on what state the factory currently resides. A predicate is defined as a boolean

function associated with a specific controller. This predicate evaluates to true if

the system is within the domain of the associated controller. A prioritized list of

controllers and predicates is maintained to determine which controller should be

activated. Controllers are programmed in C and consist of an initialization func-

tion, an execution function, and a terminating function. As mentioned in Section

Figure 12: Controllers and communication in the minifactory.

2, the minifactory is programmed by the operator through an interface tool. This

interface tool generates the high-level Python scripts that then are downloaded to

the agents through the global network. The Python scripts determine the types

of controllers running on each agent and the order in which they are instantiated.

Figure 12 shows this communication and control setup. Circular shapes denote in-

dividual software processes, square shapes stand for hardware resources. The top

half of the figure represents the OHM and the bottom half the courier. Heads in-

terpret user-level commands from Python scripts. The executor runs the low level

controllers. The internal communication between the processes on the individual

agents utilizes shared memory structures, providing fast data sharing.

4.3 General Problems with the Presented Setup 22

4.3 General Problems with the Presented Setup

Before addressing the control issue, there are a few points worth mentioning. The

minifactory consists of modular agents and thus to represent their motions each

agent was assigned its base-frame (Fig. 13). The base-frame of the OHM, cohm,

was located at the zero position of the z-actuator of the OHM. zohm was aligned

with the axis of rotation of the OHM. Its orientation in the xohmyohm-plane was

chosen so that yohm is aligned with the OHM offset arm when θohm equals zero.

The courier’s base-frame cc was located at the point where an imaginary line from

the end effector hit the factory floor when θohm was equal to zero. The orientations

of cohm and cc differed by a rotation of π about yohm (Fig. 13). In addition to the

base frames of the agents the coordinate frame of the end effector/force sensor cs

was defined as shown in Figure 13. The origin of the Magnetic Levitation Haptic

Interface’s base frame cm was located at the center of the handle, after the startup

routine of the Magnetic Levitation Haptic Interface was terminated, i.e. when

the flotor was sitting in midair with no forces acting on the handle (see Figure

14). Since the flotor, respectively the handle of the Magnetic Levitation Haptic

Figure 13: Agents’ base-frames and end effector/force sensor coordi-
nate frame.

Interface, can be pushed down or pulled up, an offset of 0.07 m was added to the

z motion of the OHM. This point is about half way between the stops of the z

motion of the OHM (Figure 17 (c)).

4.3 General Problems with the Presented Setup 23

Figure 14: Splitting up the information sent from the Magnetic Levi-
tation Haptic Interface to the minifactory.

Different coordinate frames between the force sensor and the OHM required a

transformation of the measured forces between cs and the agent coordinate frame

cohm. To transform a measured force from cs to cohm, a rotation of θ − π
2

around

the zohm-axis is necessary (Fig. 15). This leads to the following transformation of

the measured forces Fx,s, Fy,s, and Fz,s by the sensor:
Fx,ohm

Fy,ohm

Fz,ohm

 =

 cos(θ − π
2
) − sin(θ − π

2
) 0

sin(θ − π
2
) cos(θ − π

2
) 0

0 0 1

Fx,s

Fy,s

Fz,s

At the end of the startup routine of the Magnetic Levitation Haptic Interface,

the handle of the Magnetic Levitation Haptic Interface is at the origin of the

Magnetic Levitation Haptic Interface’s coordinate frame cm. A deflection of the

handle of the Magnetic Levitation Haptic Interface from its position of origin

results in motion in the minifactory. To avoid uncontrolled or unwanted motion

in the minifactory, the PD position controller running on the Magnetic Levitation

Haptic Interface always exerted a restoring force Fr on the handle. By default, the

handles position was servoed with moderate gains to the origin of cm. All other

forces that were involved in the control task were superimposed onto Fr.

4.4 Control 24

OHM Axis

of Rotation

!ohm

zohm

xohm

yohm

!

xs

ys

zs

Figure 15: Factory and Force Sensor Coordinate Frames.

4.4 Control

As already mentioned, because of mechanical problems with the courier, the control

of minifactory was reduced to controlling the OHM with the Magnetic Levitation

Haptic Interface. The control problem was divided into different subtasks which

will be described here. In order to avoid complications with the Python interface

used to control minifactory the communication setup described earlier was changed

according to Figure 16. Instead of initializing the OHM through Python scripts,

Figure 16: New communication and control architecture

the executable haptic test was created. This executable initialized all the necessary

OHM parameters involved in the process.

4.4 Control 25

4.4.1 Unilateral Control of Minifactory through the Magnetic Levitation Haptic Interface

The first step was to gain control of the θ and z motion of the OHM through

the Magnetic Levitation Haptic Interface. This unilateral control strategy was

implemented to gain insight on how well the communication between the Magnetic

Levitation Haptic Interface and minifactory, presented in Section 3, is suited for

the control task. The goal for the unilateral control strategy was to servo the

OHM to the current position of the Magnetic Levitation Haptic Interface. Both

the OHM and the Magnetic Levitation Haptic Interface were controlled by their

corresponding PD position controllers. As can be seen in the controller code of the

OHM in Appendix A, each DOF was controlled independently. The PD controller

of the Magnetic Levitation Haptic Interface was permanently servoing to the origin

of cm.

Because the OHM and the Magnetic Levitation Haptic Interface have such

different workspaces, the positions sent to the OHM from the Magnetic Levitation

Haptic Interface were scaled. An angular scaling factor kang was applied to the θ

values and a translational scaling factor ktrans was applied to the z values sent to

the OHM. The angular sensor readings of the Magnetic Levitation Haptic Interface

and the OHM are in degrees. The z movement, however, is measured in m m for

the Magnetic Levitation Haptic Interface and in m for the OHM. The values of the

gains of the OHM’s PD controller and the scaling factors can be seen in Table 1.

The negative sign of the scaling factors is a result of the different orientations of the

frames of reference cm and cohm. Through this scaling the small movements of the

Magnetic Levitation Haptic Interface were transformed into larger displacements

of the OHM.

How well the OHM did respond to the motion of the Magnetic Levitation Hap-

tic Interface can be seen in the graphs in Figure 17 where the θ and z positions of

the OHM and the Magnetic Levitation Haptic Interface are plotted against time.

Due to the different orientations of cohm and cm the sensor readings of the Mag-

netic Levitation Haptic Interface were multiplied by −1 in order to allow an easy

comparison of the movements. From Figure 17 it can be seen, that both, the θ and

the z position of the OHM followed the general motion of the Magnetic Levitation

Haptic Interface. It is apparent, that the angular motion of the OHM followed

4.4 Control 26

0 5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6

8

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

 Magnetic Levitation Haptic Interface z−Position

(a)

0 5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6
Magnetic Levitation Haptic Interface θ−Position

Time (s)
D

is
pl

ac
em

en
t (

D
eg

re
es

)

(b)

0 5 10 15 20 25 30 35 40 45 50
0.055

0.06

0.065

0.07

0.075

0.08

0.085

Time (s)

D
is

pl
ac

em
en

t (
m

)

OHM z−Position

(c)

0 5 10 15 20 25 30 35 40 45 50
−40

−30

−20

−10

0

10

20

30

OHM θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(d)

Figure 17: θ- and z-Position for Unilateral Control: the two red arrows
in figure (c) display two examples where the z-motion of the OHM
does not exactly match the motion of the Magnetic Levitation Haptic
Interface.

4.4 Control 27

Table 1: Gains and scaling factors of the PD position controller of the
OHM.

Kp,z 17500 N/m
Kd,z 250 N/m/s
Kp,θ 60 N m/◦

Kd,θ 0.65 N m/m/s
ktrans −0.0015 m/mm
kang -5

the angular motion of the Magnetic Levitation Haptic Interface more precisely

than the translation along the z-axis (Fig. 17 (c)). These small discrepancies in z

motion occurred when only very small displacements of the Magnetic Levitation

Haptic Interface were executed. These movements must be related to unwanted

shaking of the hand more than intended movements. While friction in the θ direc-

tion can be neglected for the OHM, friction plays a significant role for movements

in the z direction, since the z axis is driven by a ball screw. This is the reason why

the OHM did not exactly follow the motion in the z direction. The small position

differences in these cases did not generate high enough forces to overcome friction.

4.4.2 Bilateral Control: Transformed Forces

After the unilateral setup was proven to work, the force readings of the OHM’s

force sensor were integrated to form a bilateral setup. The OHM and the Magnetic

Levitation Haptic Interface were still controlled by their individual PD position

contollers. Just as in the previous setup, the OHM was servoed to the current

position of the Magnetic Levitation Haptic Interface with the same gains and

scaling factors as in the previous setup (Tab. 1).

The desired position of the Magnetic Levitation Haptic Interface was initiated

to be at the origin of cm. However, during operation the θ and z values of the

desired position for the Magnetic Levitation Haptic Interface were changed accord-

ing to the forces measured by the force sensor of the OHM. The measured forces

were scaled with kθ and kz (Tab. 2). When the force sensor of the OHM mea-

sured a force a resulting motion was introduced in the Magnetic Levitation Haptic

4.4 Control 28

Table 2: Force scaling factors.

kz −2.6 mm/N
kθ −1.8◦/N m

Interface. This motion caused the handle of the Magnetic Levitation Haptic In-

terface to move in the direction opposite to the direction of the force. A reduction

of the force on the tip of the hypodermic gripper tube was the result since the

movement of the handle of the Magnetic Levitation Haptic Interface introduced a

new setpoint in the PD position control of the OHM. If an operator was to hold

the handle of the Magnetic Levitation Haptic Interface he could feel a force acting

on the handle. This was a first form of force feedback between the OHM and

minifactory.

In Figure 18 the results of this experiment can be seen. The first set of peaks

before 50 s represents position control of the OHM with the Magnetic Levitation

Haptic Interface. The second set of peaks after 50 s is a result of force application

to the tip of the hypodermic gripper tube. As can be seen in Figure 18 (b),

(d) and (e) the initial setup was unstable as exemplified by the green arrows. It

can clearly be seen that when forces were applied to the force sensor, the OHM

started to oscillate in the θ direction. This problem could be eliminated through

reduction of the tangential scaling factor kang to −0.5. The improvement can be

seen in Figure 19. In z the oscillations were not apparent. What perturbed the z

signal was crosstalk between the different force sensing axes. However, the values

were small enough and did not result in an oscillation in z.

4.4.3 Impedance Control of the OHM

In a third step an impedance control of the OHM was integrated in the setup.

In the previous setup the OHM reacted to the measured forces depending on the

movement of the handle of the Magnetic Levitation Haptic Interface. This setup

inherently bore the risk to break the hypodermic gripper tube connected to the

force sensor, because the maximum force and torque exerted by the Magnetic

Levitation Haptic Interface are limited. An operator was capable to overpower

4.4 Control 29

0 10 20 30 40 50 60 70 80 90 100 110
−6

−4

−2

0

2

4

6

8

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

 Magnetic Levitation Haptic Interface z−Position

(a)

0 10 20 30 40 50 60 70 80 90 100 110
−6

−4

−2

0

2

4

6
Magnetic Levitation Haptic Interface θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(b)

0 10 20 30 40 50 60 70 80 90 100 110
0.055

0.06

0.065

0.07

0.075

0.08

0.085

Time (s)

D
is

pl
ac

em
en

t (
m

)

OHM z−Position

(c)

0 10 20 30 40 50 60 70 80 90 100 110
−40

−30

−20

−10

0

10

20

30

OHM θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(d)

0 10 20 30 40 50 60 70 80 90 100 110
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
z−Force

Time (s)

F
or

ce
 (

N
)

(e)

0 10 20 30 40 50 60 70 80 90 100 110
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
θ−Force

Time (s)

T
or

qu
e

(N
m

)

(f)

Figure 18: θ- and z-position for bilateral control using PD position
controllers: the two green arrows in figures (b), (d), and (f) display two
examples where the oscillations occurred in the θ direction when forces
were applied to the hypodermic gripper tube.

4.4 Control 30

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

6

8

Magnetic Levitation Haptic Interface θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(a)

0 10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2

3

4

OHM θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(b)

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ−Force

Time (s)

T
or

qu
e

(N
m

)

(c)

Figure 19: θ-position for improved bilateral control using PD con-
trollers: it can be seen how reducing the scaling factor for the θ-DOF
eliminated the oscillation problem.

4.4 Control 31

these maximum values fairly easy.

In this new setup the same PD position controller as in the previous two setups

was running on the Magnetic Levitation Haptic Interface. On the OHM however,

the position was controlled by an impedance controller. The utilized control law

was the same as used by DeLuca [17], when he introduced the force sensor into

minifactory and was of the form

τa = MaM
−1
d

[
Fe +Kd(q0 − q)−Bdq̇ +Gi

∫ t

0

(Fe − Fd)dτ

]
+Baq̇ + f(q̇) + Fe.

For this control law q is the generalized configuration of the system; Ma and Ba

are square matrices that describe the mass and damping parameters of the OHM;

f(q̇) is a vector containing the friction terms; the vector τa represents the applied

actuator forces; and Fe is the vector of the applied environmental forces. The

terms Md, Bd, Kd, and Fd are respectively the desired mass, the desired damping,

the desired stiffness, and the desired force of the system. These terms allowed the

user to specify the overall system behavior. In this case the system was made to

behave like a mass attached to a spring and damper about a nominal point q0.

The point q0 was the setpoint prescribed by the positions sent from the Magnetic

Levitation Haptic Interface.

Controlling the OHM with an impedance controller also changed the control

strategy used in the first bilateral setup. While the OHM still was servoed to

the position of the Magnetic Levitation Haptic Interface, the Magnetic Levitation

Haptic Interface now was servoed to the position of the OHM instead of the trans-

formed forces. Whenever a force acted on the hypodermic gripper tube, the new

control strategy prescribed the position of the OHM so that a desired force on the

sensor was maintained. Forces acting on the hypodermic gripper tube induced a

movement of the OHM to the point where this boundary condition held true. This

movement in turn induced a movement of the handle of the Magnetic Levitation

Haptic Interface. Ultimately this movement induced a force at the hand of the

operator of the Magnetic Levitation Haptic Interface. This form of force feedback

was saver than the one described before, since the operator was not in control

anymore. The results of the impedance control of the OHM can be seen in Figure

20. The friction along the z direction imposed by the ball screw was too high as

4.4 Control 32

0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6

8
Magnetic Levitation Haptic Interface z−Position

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

(a)

0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6

8

Magnetic Levitation Haptic Interface θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(b)

0 10 20 30 40 50 60 70 80
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
OHM z−Position

Time (s)

D
is

pl
ac

em
en

t (
m

)

(c)

0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6

OHM θ−Position

Time (s)

D
is

pl
ac

em
en

t (
D

eg
re

es
)

(d)

0 10 20 30 40 50 60 70 80
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
z−Force

Time (s)

F
or

ce
 (

N
)

(e)

o 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ−Force

Time (s)

T
or

qu
e

(N
m

)

(f)

Figure 20: θ- and z-position for the bilateral control with an
impedance controller for the OHM.

4.4 Control 33

Table 3: Parameters for impedance control of the OHM.

Ma,z 1.361 kg
Ma,θ 0.002 kg m2

Md,z 1.361 kg
Md,θ 0.002 kg m2

Ba,z 0 N/m/s
Ba,θ 0 N m/m/s
Bd,z 400 N m/m/s
Bd,θ 0.002 N m/m/s
fz 5.0 N
fθ 0 N
Kp,z 17500 N/m
Kd,z 250 N/m/s
Kp,θ 4 N m/◦

Kd,θ 0.2 N m/m/s
Fd,z 0 N
Fd,θ 0 N

that the impedance control would have worked in the z direction. With small gains

(e.g. Kp = 100 and Kd = 2), i.e. high compliance, the forces generated in z were

too small. As a result the OHM did not move when the hypodermic gripper tube

was pushed or pulled in the z direction. When high gains (e.g. Kp = 17500 and

Kd = 250) were applied, the system behaved too stiff. Since high gains allowed

better control of the z axis, however, high gains were used in z. Even though the

impedance controller was running for both DOF, in z only the PD part was notice-

able when the OHM was controlled with the Magnetic Levitation Haptic Interface.

The gains and parameters for the last experiment can be read form Table 3.

5 Summary and Contributions 34

5 Summary and Contributions

This thesis documents the successful foundation of a platform that can be used to

perform teleoperated microassembly. The major accomplishments consist of the

combination of the Magnetic Levitation Haptic Interface with minifactory, both

developed at CMU; further, the linking of minifactory with the Magnetic Levita-

tion Haptic Interface using the communication libraries of the RHexLib Control

Software, developed in part at CMU. Code was developed to enable communication

between minifactory and the Magnetic Levitation Haptic interface. Furthermore,

control strategies were developed to control the OHM with the Magnetic Levita-

tion Haptic Interface. Force feedback from the OHM to the Magnetic Levitation

Haptic Interface was incorporated. The results presented in this thesis are the

first experimental confirmation of teleoperation of a minifactory agent. The ex-

perimental results convincingly encourage further developments of minifactory to

reach teleoperated microassembly.

5.1 Future Work

To improve the control of the OHM through the Magnetic Levitation Haptic In-

terface it would help to lock the “spare” DOFs of the Magnetic Levitation Haptic

Interface, that do not introduce any motion in the OHM. Of course once the courier

is introduced to the setup the only DOFs that will need to be locked will be ζm and

ψm. The other four DOFs will be needed to control OHM and courier. In order

to lock the superfluous DOFs their positions will have to be permanently servoed

to their respective starting position. The position controller of the Magnetic Lev-

itation Haptic Interface will need to be set with high gains in these directions to

impede deflections and provide high stiffness.

As mentioned earlier there is crosstalk between the different force sensing axes.

This problem could be reduced through calibration of the force sensor. Calibration

of the force sensor would greatly improve the performance of the OHM when forces

act on the hypodermic gripper tube.

The Magnetic Levitation Haptic Interface has a much smaller workspace than

the OHM or minifactory in general. A first attempt to account for this difference

5.1 Future Work 35

was to introduce scaling factors. An other possibility to introduce larger motions

of the OHM would be to add a velocity controller to the list of controllers with

a corresponding domain. Instead of prescribing a desired setpoint, deflecting the

Magnetic Levitation Haptic Interface from its origin will induce a velocity in the

corresponding direction in the OHM. The induced velocity can be proportional to

the deflection of the Magnetic Levitation Haptic Interface handle. This will hold

true up to a certain maximum velocity, after which the acceleration will be set

to zero, yielding a constant velocity. As mentioned in Section 2, the actuators of

the OHM have stops. A safety mechanism would need to be included in order

to avoid that the operator pushes the actuators beyond these stops. Like this

large motions of the OHM could be controlled with the limited workspace of the

Magnetic Levitation Haptic Interface.

Another task for the future would be to directly interface the Magnetic Levita-

tion Haptic Interface with minifactory. Like this the bandwidth limitation imposed

by the bridge would be eliminated. This will be especially useful when a new force

sensor, with higher sensing bandwidth, is integrated in the OHM.

(a) (b)

Figure 21: Problematic configurations of courier and OHM.

In order to be able to perform teleoperated microassembly with minifactory

it is necessary to include the courier into the existing setup. The discrepancy

in distribution of DOFs between minifactory and the Magnetic Levitation Haptic

Interface presents some problems, however. The DOFs of minifactory are divided

between the courier and the OHM. The fact that the minifactory shares its four

DOFs among two agents introduces different scenarios, where careful evaluation

5.1 Future Work 36

of the situation needs to take place and influence the controller design, to avoid

breaking the force sensor on the OHM. The reason is that the courier does not

possess extrinsic means to measure forces, since no force sensor is built into it.

During contact tasks where the axis of motion of the courier (either xc or yc)

aligns with the force sensor’s xs-axis and vc points in the direction increasing the

force on the force sensor, the controller must prevent the courier from breaking

the hypodermic gripper tube or the force sensor (Fig. 21). The problem consists

of the inability of the end effector to counteract or retract from exposure to the

measured force Fx,s. This problem does not only hold for exactly those points

where the axis of motion of the courier and xs align, but in a region around these

points due to frictional effects.

References 37

References

[1] P. M. Muir, J. Gowdy, and A. A. Rizzi, “Minifactory: A precision assembly

system that adapts to the product life cycle,” in SPIE Symp. on Intelligent

Systems and Advanced Manufacturing, (Pittsburgh, PA), October 1997.

[2] H. Z. Tan, M. A. Srinivasan, B. Eberman, and B. Cheng, Human Factors

For the Design of Force-Reflecting Haptic Interfaces. DSC-Vol.55-1, Dynamic

Systems and Control: The American Society of Mechanical Engineers, 1994.

[3] A. Rizzi and R. Hollis, “Opportunities for increased intelligence and autonomy

in robotic systems for manufacturing,” in Robotics Research, the Eighth In-

ternational Symposium of Robotics Research, pp. 141 – 151, Springer-Verlag,

October 1997.

[4] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Agile assembly architecture: An

agent-based approach to modular precision assembly systems,” in Proc. IEEE

Int’l. Conf. on Robotics and Automation, (Albuquerque, NM), April 1997.

[5] R. L. Hollis and A. Quaid, “An architecture for agile assembly,” in Proc. Am.

Soc. of Precision Engineering, 10th Annual Mtg., (Austin, TX), October 1995.

[6] J. Gowdy and Z. J. Butler, “An integrated interface tool for the architecture

for agile assembly,” in IEEE Int’l. Conf. on Robotics and Automation, May

1999.

[7] R. L. Hollis and J. Gowdy, “Miniature factories for precision assembly,” in

International Workshop on Miniature Factories, (Tsukuba, Japan), pp. 9 –

14, December 1998.

[8] A. E. Quaid and R. L. Hollis, “3-DOF closed-loop control for planar linear

motors,” in Proc. IEEE Int’l Conf. on Robotics and Automation, (Lueven,

Belgium), May 1998.

[9] W.-C. Ma, A. A. Rizzi, and R. L. Hollis, “Optical coordination sensor for

precision cooperating robots,” in IEEE International Conference on Robotics

and Automation, vol. 2, (San Francisco, CA), pp. 1621 – 1626, April 2000.

References 38

[10] H. B. Brown, P. Muir, A. Rizzi, M. Sensi, and R. Hollis, “A precision manipu-

lator module for assembly in a minifactory environment,” in Proceedings of the

2001 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS ’01), vol. 2, pp. 1030 – 1035, 2001.

[11] A. Quaid and R. L. Hollis, “Cooperative 2-DOF robots for precision assembly,”

in Proc. IEEE Int’l Conf. on Robotics and Automation, (Minneapolis, MN),

April 1996.

[12] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Distributed programming and co-

ordination for agent-based modular automation,” in The Ninth International

Symposium of Robotics Research, (Snowbird, UT), October 1999.

[13] S. Kume and A. Rizzi, “A high-performance network infrastructure and pro-

tocols for distributed automation,” in Proceedings of the 2001 IEEE Interna-

tional Conference on Robotics and Automation (ICRA ’01), vol. 3, pp. 3121

– 3126, May 2001.

[14] J. Gowdy and A. Rizzi, “Programming in the architecture for agile assem-

bly,” in IEEE International Conference on Robotics and Automation, vol. 4,

pp. 3103 – 3108, May 1999.

[15] P. J. Berkelman, Z. J. Butler, and R. L. Hollis, “Design of a hemispherical

magnetic levitation haptic interface device,” in ASME International Mechan-

ical Engineering Congress and Exposition, vol. 58, (Atlanta), pp. 483 – 488,

November 1996.

[16] P. Berkelman, R. Hollis, and D. Baraff, “Interaction with a realtime dynamic

environment simulation using a magnetic levitation haptic interface device,”

in IEEE International Conference on Robotics and Automation, pp. 3261 –

3266, May 1999.

[17] R. T. DeLuca, “Force-Based Interaction for Distributed Precision Assembly,”

Master’s thesis, Carnegie Mellon University, 2000.

References 39

[18] U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly

mobile hexapod robot,” in The International journal of Robotics Research,

vol. 20, pp. 616–631, 2001.

[19] A. Rizzi, “Hybrid control as a method for robot motion programming,” in

IEEE Int’l. Conf. on Robotics and Automation, vol. 1, pp. 832 – 837, May

1998.

A Communication Code 40

A Communication Code

A.1 Endian Swapping Code

The endian swapping code was found on the internet and integrated into the

communication setup. The source is shown in the header file as well as the C++

file.

• Header File

#ifndef _SWAP_ENDIAN

#define _SWAP_ENDIAN

/**

FUNCTION: SwapEndian

PURPOSE: Swap the byte order of a structure

EXAMPLE: float F=123.456;; SWAP_FLOAT(F);

Source: http://www.gdargaud.net/Hack/Source/SwapEndian.h.txt

***/

#define SWAP_SHORT(Var) Var = *(short*)\

SwapEndian((void*)&Var, sizeof(short))

#define SWAP_USHORT(Var) Var = *(unsigned short*)\

SwapEndian((void*)&Var, sizeof(short))

#define SWAP_LONG(Var) Var = *(long*)\

SwapEndian((void*)&Var, sizeof(long))

#define SWAP_ULONG(Var) Var = *(unsigned long*)\

SwapEndian((void*)&Var, sizeof(long))

#define SWAP_FLOAT(Var) Var = *(float*)\

SwapEndian((void*)&Var, sizeof(float))

#define SWAP_DOUBLE(Var) Var = *(double*)\

SwapEndian((void*)&Var, sizeof(double))

extern void *SwapEndian(void* Addr, const int Nb);

A.1 Endian Swapping Code 41

#endif

• C++ Program

#include "swapEndian.h"

/**

FUNCTION: SwapEndian

PURPOSE: Swap the byte order of a structure

EXAMPLE: float F=123.456;; SWAP_FLOAT(F);

SOURCE: http://www.gdargaud.net/Hack/Source/SwapEndian.c.txt

***/

void *SwapEndian(void* Addr, const int Nb) {

static char Swapped[16];

switch (Nb) {

case 2: Swapped[0]=*((char*)Addr+1);

Swapped[1]=*((char*)Addr);

break;

case 4: Swapped[0]=*((char*)Addr+3);

Swapped[1]=*((char*)Addr+2);

Swapped[2]=*((char*)Addr+1);

Swapped[3]=*((char*)Addr);

break;

case 8: Swapped[0]=*((char*)Addr+7);

Swapped[1]=*((char*)Addr+6);

Swapped[2]=*((char*)Addr+5);

Swapped[3]=*((char*)Addr+4);

Swapped[4]=*((char*)Addr+3);

Swapped[5]=*((char*)Addr+2);

Swapped[6]=*((char*)Addr+1);

Swapped[7]=*((char*)Addr);

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller 42

break;

case 16:Swapped[0]=*((char*)Addr+15);

Swapped[1]=*((char*)Addr+14);

Swapped[2]=*((char*)Addr+13);

Swapped[3]=*((char*)Addr+12);

Swapped[4]=*((char*)Addr+11);

Swapped[5]=*((char*)Addr+10);

Swapped[6]=*((char*)Addr+9);

Swapped[7]=*((char*)Addr+8);

Swapped[8]=*((char*)Addr+7);

Swapped[9]=*((char*)Addr+6);

Swapped[10]=*((char*)Addr+5);

Swapped[11]=*((char*)Addr+4);

Swapped[12]=*((char*)Addr+3);

Swapped[13]=*((char*)Addr+2);

Swapped[14]=*((char*)Addr+1);

Swapped[15]=*((char*)Addr);

break;

}

return (void*)Swapped;

}

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller

void* mkcom_thread(void* arg)

{

/*Create a new CommManager that will handle the

communication between the devices.*/

CommManager* mkmgr = new CommManager();

const char* mkspec = "net: int port = 5500";

if (!mkmgr->initPortal(mkspec)) {

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller 43

fprintf(stderr, "Could not initialize portal %s\n", mkspec);

exit(-1);

}

/*StreamSink is used to perform a handshake with the minifactory.

Its sole task is to receive two messages from the minifactory.*/

StreamSink* mksink = mkmgr->createStreamSink(sizeof(com_id_t), 700, 10);

printf("made StreamSink\n");

/*Blocking until the first packet from minifactory was received*/

Message* mkmsg;

mksink->waitData(-1);

mkmsg = mksink->waitData(-1);

/*Waiting for the 2nd message with information of the sender

of the handshake message*/

if (!mkmsg) {

perror("Error waiting for box ID\n");

delete mkmgr;

exit(-1);

}

com_id_t mkid = mkmsg->getInt();

printf("mailboxID=%d\n",mkid);

/*Create Mailer that will send infromation to the minifactory using the

received information of the sender*/

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller 44

Mailer* mkmailer =

mkmgr->createMailer(mkmsg->getSource(), sizeof(FloaterPosition), mkid,

mkmsg->getSource()->getID());

/*Loop that will send the position information to the

minifactory until the program is terminated.*/

/*getting time for performance test*/

double start_time=getTheTime();

double timeperiode = 30000;

/*MAILBOX TO RECEIVE FORCES FROM PUMA*/

Mailbox* forcebox = mkmgr->createMailbox(sizeof(OHM_Forces), 400);

/*Mailbox that terminates communication between OHM and Haptic Controller*/

Mailbox* comm_kill = mkmgr -> createMailbox(sizeof(int), 300);

/*Message Counter*/

int sent = 0;

int rec_msg = 0;

/*LOOP BEGINS HERE*/

while(1)

{

while(1)

{

Message* msg_to_be_sent = mkmailer->createMsg();

FloaterPosition* mkpos = (FloaterPosition*) msg_to_be_sent->getData();

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller 45

mkpos->zpos = *(double*)SwapEndian((void*)&sh->fwpos[2], 8);

mkpos->yaw = *(double*)SwapEndian((void*)&sh->fwpos[5], 8);

/*This method returns the maximum size of the message’s block of data.*/

msg_to_be_sent->setSize(sizeof(FloaterPosition));

if (mkmailer->sendMsg(msg_to_be_sent) < 0) {

perror("Failed send\n");

mkmailer->releaseMsg(msg_to_be_sent);

break;

}

sent++;

bool new_data = comm_kill->newMail();

if(new_data)

{

printf("Sent MSG: %d\n Received Messages: %d\n", sent, rec_msg);

//exit(1);

break;

}

bool new_frc = forcebox->newMail();

if(new_frc)

{

Message* rec_frc = forcebox->getData();

OHM_Forces* frc = (OHM_Forces*) rec_frc->getData();

//frc->xforce = *(double*)SwapEndian((void*)&frc->xforce, 8);

//frc->yforce = *(double*)SwapEndian((void*)&frc->yforce, 8);

frc->zpos = *(double*)SwapEndian((void*)&frc->zpos, 8);

frc->thetapos = *(double*)SwapEndian((void*)&frc->thetapos, 8);

frc->zforce = *(double*)SwapEndian((void*)&frc->zforce, 8);

frc->torque = *(double*)SwapEndian((void*)&frc->torque, 8);

A.2 Communication Thread on The Magnetic Levitation Haptic Interface
Controller 46

sh->des_pos[2]=-(100/6)*(frc->zpos-0.07);

sh->des_pos[5]=-(frc->thetapos);

sh->ohm_zpos=frc->zpos;

sh->ohm_thetapos=frc->thetapos;

sh->ohm_zforce=frc->zforce;

sh->ohm_torque=frc->torque;

forcebox->releaseMsg(rec_frc);

rec_msg++;

}

sem_wait(&haptic_to_mf_Sem);

}

mksink->waitData(-1);

mkmsg = mksink->waitData(-1);

if (!mkmsg)

{

perror("Error waiting for box ID\n");

delete mkmgr;

exit(-1);

}

}

//delete mkmgr;

return NULL;

}

void startmk_com()

{

pthread_attr_t mkattr;

sem_init(&haptic_to_mf_Sem,1,0);

A.3 Controller Code for the OHM with Impedance Control 47

pthread_attr_init(&mkattr);

pthread_attr_setdetachstate(&mkattr,PTHREAD_CREATE_DETACHED);

pthread_attr_setinheritsched(&mkattr,PTHREAD_EXPLICIT_SCHED);

pthread_attr_setschedpolicy(&mkattr,SCHED_RR);

mkattr.param.sched_priority = 6; /*Priority of sending thread must always

be lower than the priority of the haptic

device position control thread*/

pthread_create(NULL,&mkattr,mkcom_thread,NULL);

printf("Started Michael’s communication thread\n");

}

A.3 Controller Code for the OHM with Impedance Control

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ohm.h>

#include <ohm_exec.h>

#include <control/control_if.h>

#include <control/coop_force_ctl.h>

#include <aaa_net.h>

#include <util/thread_util.h>

#include <control/control.h>

#include "haptic_ctl.h"

#include "timeUtils.h"

#include "ip_timer.h"

#include "swapEndian.h"

#include "RHexCom.hh"

A.3 Controller Code for the OHM with Impedance Control 48

#define DEBUG 0

#if DEBUG

#define DPRINT(s) printf s

#else

#define DPRINT(s)

#endif

#ifdef SIGN

#undef SIGN

#endif

#ifdef DEADBAND

#undef DEADBAND

#endif

#define SIGN(a) ((a) >= 0.0 ? 1.0 : -1.0)

#define DEADBAND(a,b) (fabs(a) <= (b) ? (0.0) : (1.0))

static CommManager* mgr;

static Mailbox* box;

static Mailer* forcemailer;

static Mailer* terminate_comm;

static Message* received_msg;

static Message* force_msg;

static StreamSource* source;

static FloaterPosition* dest;

static OHM_Forces* frc;

/*Message Counters*/

int received = 1;

int sent=0;

A.3 Controller Code for the OHM with Impedance Control 49

void haptic_ctl_init(haptic_spec_t *spec, OHM_state_t *ohm_state)

{

fprintf(stderr,"Initializing Haptic Control\n");

if(!mgr)

{

mgr = new CommManager();

box = mgr->createMailbox(sizeof(FloaterPosition), MAILBOX_ID);

const char* spec_mgr = "net: int port = 5400";

if (!mgr->initPortal(spec_mgr))

{

fprintf(stderr, "Could not initialize portal %s\n", spec_mgr);

exit(-1);

}

/*Initialize a StreamSource*/

source =

mgr->createStreamSourceByHost(MASTER, MASTER_PORT,\

sizeof(com_id_t), STREAM_ID);

/*Create message to be sent with maximum capacity of the mailbox as

specified by CommManager::createStreamSource*/

Message* msg = source->createMsg();

/*Send message to remote stream sink*/

source->sendMsg(msg);

/*This methode blocks until the sent message msg is no longer on the

queue of messages awaiting acknowledgement*/

source->ackBlock(0);

A.3 Controller Code for the OHM with Impedance Control 50

msg = source->createMsg();

int mbid = box->getID();

printf("boxID = %d\n", mbid);

int* swap_msg = (int*)msg->getData();

*swap_msg = *(int*)SwapEndian((void*)&mbid, 4);

printf("swaped boxID=%d\n", *swap_msg);

msg->setSize(sizeof(int));

printf("vlaue of msg = %d", msg->getData());

source->sendMsg(msg);

printf("sent msg\n");

forcemailer = mgr->createMailerByHost(MASTER, MASTER_PORT,\

sizeof(OHM_Forces), MASTER_FORCE_BOX);

}

else

{

/*Create message to be sent with maximum capacity of the mailbox as

specified by CommManager::createStreamSource*/

Message* msg = source->createMsg();

/*Send message to remote stream sink*/

source->sendMsg(msg);

/*This methode blocks until the sent message msg is no longer on the

queue of messages awaiting acknowledgement*/

source->ackBlock(0);

}

spec->axis[0]._integral = 0;

spec->axis[1]._integral = 0;

printf("end of hapltic_ctl_init\n");

return;

A.3 Controller Code for the OHM with Impedance Control 51

}

void haptic_ctl_eval(haptic_spec_t *spec,

OHM_state_t *ohm_state, OHM_act_cmd_t *cmd)

{

int i,r,c;

static int t=0;

double dest_pos[2] = {0,0}; /*used to include the force_ctl code*/

double Chan[4],

pos,

vel,

pos_des,

kp,

kd,

Mact,

Bact,

fric,

Mdes,

Bdes,

Fdes,

new_i,

f_err,

command,

Fe_COUR[3], /* Z force, X Force, and Y\

Force in courier coordinates */

Fe_OHM[3], /* Z force, Theta Torque, and Radial

Force in ohm coordinates */

Fe_GRIP[3], /* Z force, Tangent Force, and Radial

Force at gripper tip in ohm coordinates */

Fe_FS[3] = {0,0,0}; /* Z force, Tangent Moment, and Radial

Moment in force sensor coordinates */

A.3 Controller Code for the OHM with Impedance Control 52

OHM_act_state_t *act_state = &ohm_state->act_state;

/* Get Load Cell Values */

for(i=3;i<=6;i++)

{

Chan[i-3] = act_state->ad_sens.ad.gripper_ad[i] - spec->no_load[i-3];

}

/* Perform Transform to Force/Torques */

for(r=0;r<3;r++)

{

for(c=0;c<4;c++)

{

Fe_FS[r] += spec->cal[c+4*r]*Chan[c];

}

}

Fe_GRIP[0] = -1.0*Fe_FS[0];

Fe_GRIP[1] = -1.0*(1.0/spec->grip_len[0])*Fe_FS[1];

Fe_GRIP[2] = 1.0*(1.0/spec->grip_len[1])*Fe_FS[2];

Fe_OHM[0] = Fe_GRIP[0];

Fe_OHM[1] = Fe_GRIP[1]*spec->grip_loc;

Fe_OHM[2] = Fe_GRIP[2];

Fe_COUR[0] = Fe_GRIP[0];

Fe_COUR[1] = -Fe_GRIP[2]*cos(act_state->axis[1].pos)+\

Fe_GRIP[1]*sin(act_state->axis[1].pos);

Fe_COUR[2] = Fe_GRIP[1]*cos(act_state->axis[1].pos)+\

Fe_GRIP[2]*sin(act_state->axis[1].pos);

A.3 Controller Code for the OHM with Impedance Control 53

/* poll the mailbox*/

bool new_data = box->newMail();

if(new_data)

{ /*new data...update the destination and delete the

old mail message if there was one*/

if(received_msg)

{

box->releaseMsg(received_msg);

}

received_msg = box->getData();

dest = (FloaterPosition*) received_msg->getData();

received++;

if(received%2==0)

{

force_msg = forcemailer->createMsg();

frc = (OHM_Forces*) force_msg->getData();

frc->zpos = act_state->axis[0].pos;

frc->thetapos = act_state->axis[1].pos;

frc->zforce = Fe_OHM[0];

frc->torque = Fe_OHM[1];

force_msg->setSize(sizeof(OHM_Forces));

if (forcemailer->sendMsg(force_msg) == 0)

{

sent++;

}

}

}

/*if we have a destination from old data, or from newly received

data, run the control loop*/

A.3 Controller Code for the OHM with Impedance Control 54

if(dest)

{

dest_pos[0] = 0.07-0.005*(dest->zpos);

dest_pos[1] = -(dest->yaw);

for(i=0;i<2;i++)

{

kp = spec->axis[i].kp;

kd = spec->axis[i].kd;

pos = act_state->axis[i].pos;

vel = act_state->axis[i].vel;

/* Impedance Controller Stuff - Gravity Term Ignored */

pos_des = dest_pos[i];

Mact = spec->axis[i].Mact;

Bact = spec->axis[i].Bact;

fric = spec->axis[i].fric;

Mdes = spec->axis[i].Mdes;

Bdes = spec->axis[i].Bdes;

Fdes = spec->axis[i].Fdes;

/* Intergral Term Stuff */

f_err = (Fe_OHM[i]-Fdes);

new_i = (spec->axis[i]._integral + CTL_PERf * spec->axis[i].ki * f_err);

if(new_i > spec->axis[i].i_limit[0])

new_i = spec->axis[i].i_limit[0];

else if(new_i < -spec->axis[i].i_limit[1])

new_i = -spec->axis[i].i_limit[1];

spec->axis[i]._integral = new_i;

command = Mact*(1.0/Mdes)*(kp*(pos_des - pos) -\

A.3 Controller Code for the OHM with Impedance Control 55

Bdes*vel + new_i - Fdes) + Bact*vel;/*1.5*Fdes) + Bact*vel;*/

cmd->force[i] = Mact*(1.0/Mdes)*(Fe_OHM[i] + kp*(pos_des - pos) -\

Bdes*vel + new_i) + Fe_OHM[i] + Bact*vel +\

fric*SIGN(command);

if (cmd->force[i] > spec->axis[i].limit)

cmd->force[i] = spec->axis[i].limit;

else if (cmd->force[i] < -spec->axis[i].limit)

cmd->force[i] = -spec->axis[i].limit;

}

}

return;

}

void haptic_ctl_finish(haptic_spec_t *spec, OHM_state_t *ohm_state)

{

/*send 20 message to the haptic device to

tell it to stop sending its position infromation*/

terminate_comm = mgr->createMailerByHost(MASTER,\

MASTER_PORT,sizeof(int), MASTER_BOX);

int kill=1;

for(int m=0;m<20;m++)

{

if(terminate_comm->sendInt(kill)<0)

{

printf("Mailbox invalidated\n");

}

printf("kill = %d\n", kill);

kill++;

}

fprintf(stderr,"finish Haptic Control\n");

A.3 Controller Code for the OHM with Impedance Control 56

printf("Received Messages: %d\n Sent Messages: %d\n", received, sent);

}

B Running and Terminating the Demos 57

B Running and Terminating the Demos

To run the Demos which allow the control of minifactory with the Magnetic Levi-

tation Haptic Interface the following steps need to be performed:

1. Check that vacuum in minifactory is on and turn on puma.

2. Make sure that the amplifiers on the Magnetic Levitation Haptic Interface

are off yet the power is on. Both metal switches must be in on position, the

black switch must be off.

3. Open four terminals on a lab computer (Fig. 22)

3

1 2

4

Figure 22: Terminals needed to run Demos.

4. Telnet to puma in terminal 1 and 2:

telnet kummermi@puma.msl.ri.cmu.edu ←↩
password: ____________ ←↩

5. If you are not running the demos from Dulcian, ssh into Dulcian in terminal

3 and 4.

ssh kummermi@dulcian.msl.ri.cmu.edu ←↩
password: ____________ ←↩

6. In terminals 1 and 2 change directory to:

cd ~kummermi/haptic_control/impedance_small_sf/ ←↩

7. In terminal 3 change directory to:

cd ~kummermi/teleop_src_wdir/maglev_to_minifactory/ ←↩

B Running and Terminating the Demos 58

8. In terminal 4 change directory to:

cd ~bertram/frozen/drivers/

9. You will need to run the drivers for the Magnetic Levitation Haptic Interface

in terminal 4. In order to be able to do that you will need root access:

- su ←↩

- password: ____________ ←↩

- Run drivers:

./apc8620_drv ←↩

10. In terminal 3 run the control and communication software for the Magnetic

Levitation Haptic Interface and get the flotor to take off:

./Test ←↩
If Ok to switch on amps if no further warnings gets printed on screen,

carefully turn on the amplifiers (black switch) of the Magnetic Levitation

Haptic Interface. Then hit

t ←↩
and the flotor will take off.

11. In terminal 1 run ohm exec:

./ohm_exec ←↩

12. In terminal 2 run haptic test with the required parameters for the gains:

./haptic_test 17500 250 4 0.2 ←↩

You should be able to control the OHM with minifactory now and get some force

feedback from the OHM to minifactory. To play around with the demo you can

adjust the gains in the last step. This demo is the one with the impedance controller

on the OHM. To run the demo with the PD controller with small scaling factors

two things need to be changed:

- In step 6 you need to change the directory to:

cd ~kummermi/haptic_control/pd_small_sf/ ←↩

- haptic test will need to be run with different gains:

./haptic_test 17500 250 60 0.65 ←↩

B Running and Terminating the Demos 59

To shut the demo down the following steps need to be performed:

1. Quit the haptic test application in terminal 2 by hitting ctrl-c.

2. Land the Magnetic Levitation Haptic Interface in terminal 3:

l ←↩

3. Turn off the amplifiers of the Magnetic Levitation Haptic Interface once the

flotor landed.

4. Quit ohm exec in terminal 1 by hitting ctrl-c.

5. Exit the application in terminal 3 (./Test) by hitting ctrl-c.

6. Run Test again in terminal 3:

./Test ←↩
It will not start up properly. Kill it again (ctrl-c).

7. Finally terminate the drivers in terminal 4 by hitting ctrl-c.

This little inconvenience of killing and restarting the Test application is necessary,

because if Test is not restarted once before terminating the drivers, Dulcian will

freeze. This will make it necessary to reboot Dulcian.

C Building Your Own Copy 60

C Building Your Own Copy

If you want to change the demo and expand it by building stuff on top of the

existing setup, it is recommended to build the necessary software directories in

your home directories on the different computers. The executables running on the

OHM are not compiled on the OHM brain boxes. All the software running on

the brain boxes is compiled using a cross compiler on Trombone. In order to be

able to build new executables for new demos you will need an account on Dul-

cian (Magnetic Levitation Haptic Interface Controller), Trombone, and the brain

boxes of all involved agents. On the included CD the necessary directories for

the different computers are provided as archives. Just untar the different files

(tar -xvf *.tar) in your home directory on the corresponding computer. The

Flute directories are not relevant for the demo. The directory you will need in

your Dulcian home directory is:

~/teleop_src_wdir

and all of its subdirectories. In the subdirectories:

~/teleop_src_wdir/maglev_to_minifactory

~/teleop_src_wdir/include_michael

you will find all of the files that allow to modify the behavior of the Magnetic

Levitation Haptic Interface in the teleoperation setup. All the important header

files are in the ~/teleop_src_wdir/include_michael directory. All the relevant

C/C++ code is in ~/teleop_src_wdir/maglev_to_minifactory. The most im-

portant files here are:

- maglev.c

- masterComm.cc

- mailHandler.cc

- commHandler.cc

- commCommand.cc

Since the communication of minifactory with the Magnetic Levitation Haptic In-

terface utilizes the RHexLib communication libraries, it is necessary to have a

C Building Your Own Copy 61

working copy of the RHexLib software. It should be no problem to build the

RHexLib control software on Dulcian. Just get a copy and build it in your home

directory. On Trombone, however, building RHexLib is more difficult. For this

reason you will need to link against a copy containing the necessary communi-

cation components of RHexLib in Al Rizzi’s directory. This can be seen in the

different Makefiles in ~/mini/agent/ohm-exec/ and its subdirectories. Whatever

hard links you will encounter in the different Makefiles should be left as is. To

understand best how the compilation process works on Dulcian check the Makefile

in ~/teleop_src_wdir/maglev_to_minifactory/.

To build or modify existing controllers for the OHM the two most important

files are ~/mini/agent/ohm-exec/control/control.c (add controller functions

to ctl_table) and ~/mini/agent/ohm-exec/control/control_if.h (add or edit

existing controller structure and add it to ctl_type and ctl_spec_t). Your new

controller should contain an initialization function an execution function and a ter-

minating function (example: ~/mini/agent/ohm-exec/control/haptic_ctl.c).

A lot of other files were changed in order to get everything to compile with

g++. All these changes can be found in the files when searching them for Kummer.

	List of Tables
	List of Figures
	Abstract
	Zusammenfassung
	Introduction
	Problem Specification

	AAA, Minifactory, and Magnetic Levitation Haptic Interface
	The Architecture for Agile Assembly
	The Minifactory Environment
	The Magnetic Levitation Haptic Interface
	Force Sensor

	Hardware Setup & Communication
	Hardware Setup
	Communication

	Control of the Minifactory with the Magnetic Levitation Haptic Interface
	Magnetic Levitation Haptic Interface
	Controller in the Minifactory
	General Problems with the Presented Setup
	Control

	Summary and Contributions
	Future Work

	References
	Communication Code
	Endian Swapping Code
	Communication Thread on The Magnetic Levitation Haptic Interface Controller
	Controller Code for the OHM with Impedance Control

	Running and Terminating the Demos
	Building Your Own Copy

