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Abstract: Autonomous calibration techniques are applied to the calibra-
tion of two sensors of a planar robot: a platen sensor and a coordination
sensor. The redundant angle measurements of the platen sensor are used
to identify its parameters, improving its output accuracy by better than
a factor of two. Redundant position measurements using both sensors are
also used in an attempt to further improve the platen sensor accuracy and
identify the relative position of the two sensors.

1. Introduction

In the Microdynamic Systems Laboratory! at Carnegie Mellon University, we
are developing modular robotic components and tools to support the rapid
deployment and programming of high-precision automated assembly systems
[1]. The overall goal is to provide mechanically, computationally, and algorith-
mically modular factory agents and a collection of tools to support a user’s
interaction with the agents in an effort to expedite the process of designing,
integrating, and deploying automated assembly systems. The work presented
here focuses on the calibration of one of the most basic components of this
larger system — the sensor systems associated with courier agents.

A courier (shown schematically in Fig. 1) is a planar robot which serves
as both a product-carrier and local manipulation device in a minifactory as-
sembly system [1]. The device is built upon existing planar linear (Sawyer)
motor technology [2], in which four linear stepping motors are combined in a
housing to provide large z,y motions over a tabletop platen surface, as well
as a rotation capability of a few degrees. Closed-loop control of these devices
recently became possible with the development of a magnetic platen sensor
[3]. This sensor detects the toothed structure of the platen surface and can
interpolate between the nominal 1 mm tooth pitch to roughly 1 part in 5000,
yielding an overall position sensing resolution of 0.2 ym. The complete sensor
(see Fig. 2) consists of four quadrature-pairs, shown schematically in Fig. 3.
Each pair measures motion along one of the two cardinal directions by mon-
itoring changes in the magnetic coupling between the drive and sense coils.
When integrated, information from the four pairs allows measurement of the
full 3-DOF position of the robot. In addition, the planar robot is augmented
with a coordination sensor, shown in Fig. 4, based on an upward-facing lateral

1See http://www.cs.cmu.edu/~msl
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Figure 1. Courier top view Figure 2. Platen sensor detail

effect position sensing diode. This device can precisely measure the relative
displacement between the courier and overhead devices outfitted with LED
beacons to sub-micron resolution [4].

Whereas basic models of planar linear motor sensors and actuators are suf-
ficient for undemanding positioning applications, improved models are crucial
for high-performance closed-loop operation. Poorly modeled effects including
magnetic saturation, eddy-current damping, and non-linear position and angle
dependencies limit positioning accuracies, controller robustness, and accurate
force generation capabilities, all of which are vital for successful use in an en-
vironment such as the minifactory. Unfortunately, global effects such as platen
tooth variations and thermal deformations are not easily captured by practical
models, fundamentally limiting the accuracy of the models considered here.

Prior work in our laboratory has developed parameterized models for both
the actuators and sensors by recourse to complicated and time-consuming pro-
cesses which rely on high-precision independent sensors, specifically a laser
interferometer and load cell [5, 3]. Realizing that model parameters will in-
evitably vary from device to device, and recognizing the need for stand-alone
self-calibrating devices, a more practical procedure is necessary to support the
autonomous calibration of individual devices in the field.

Fortunately, it has been shown that external measuring devices are not
always necessary to accomplish such parameter identification tasks. Identifica-
tion of the kinematic parameters of redundant manipulator systems can be per-
formed by recording the joint angles during self-motions with the end-effector
fixed in the workspace [6]. This technique has also been used for calibration
of parallel mechanisms with redundant sensing [7]. Similarly, two 6-DOF force
sensors pressing against each other in different configurations have been shown
to provide sufficient information to enable their calibration [8]. The lesson to
be taken from these works is that redundant measurements, even if individually
inaccurate, can allow for autonomous calibration. In this paper, we focus on
the application of these techniques to the calibration of the redundant sensors
of the planar robot and experimentally demonstrate their effectiveness.
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2. Approach

In general, the autonomous calibration methods mentioned above presume the
existence of a parametric model for each sensing component of the form

Yi = filks, u), (1)

where y; is the scalar sensor output, k; € IR" is the vector of model parameters,
and u € IR" is the vector of input variables. Given a set of these models,
i€ {l...N}with N > n, the redundancy of the sensor system can be expressed
through a constraint equation, g(- - ), of the form

g(yl(k1¢u)ay2(k2=u)¢"'}yn(kN¢u)):0' (2)

The task is to recover the parameter vectors, k;, given a series of measure-
ments of the input vectors, u; j € {1...M}. This is, in general, a non-linear
optimization or root-finding problem and iterative methods are traditionally
used to minimize Z]Mﬂ gf- over the parameter vectors, ki ...ky. However,
if the models, f;(---), are linear in the parameter vectors and the constraint
equation, g(---), is linear in the outputs, y;, it is well known that an analytic
closed-form solution can be found.

The following section presents our application of these ideas to the au-
tonomous calibration of both the platen and coordination sensor for a courier
robot. To quantitatively evaluate and understand the benefit of including mul-
tiple sensing modalities, we have applied a number of different verification
methods to these experiments. These include examining the condition number
of the second derivatives of ), gjz» (which provides evidence for the identifiabil-
ity of the parameters), and the magnitude of the residual error both over the
calibration data and independent test data. While these methods can detect
a number of deficiencies, they are insensitive to certain model defects or viola-
tions of assumptions. These defects can often be detected through the use of an
external sensor, and thus we also include comparisons against an independent
sensor whenever possible.

3. Results

In this section, autonomous calibration of the platen sensor using a linear con-
straint equation is first presented. The platen sensor error model is then ex-
tended to include additional effects, and nonlinear constraint equations are de-



rived to simultaneously calibrate the platen sensor parameters and the mount-
ing parameters of the coordination sensor.

3.1. Platen sensor autonomous calibration

3.1.1. Formulation

Prior work [3] used a cumbersome but highly-precise laser interferometer to
calibrate the platen sensor error. Fourier techniques were used to identify
the significant frequency components of the error (difference from an idealized
sensor model) as a function of the courier position. This demonstrated that
the error of each sensor segment is well-modeled by an equation of the form

€i = kio+kiisin(fp:) + kizcos(fpi) + ki sin(2fpi) + ki a cos(2fpi )+ (3)
kissin(4fp;) + kie cos(4fp:) + ki7sin(6fp;) + ki g cos(6fp:),

where p; is the unmodified output of the i*" sensor, f := 27/p, and p is the
pitch of the sensor teeth — 1.016 mm for our device. This model assumes the
error is small enough that p; can be used instead of the actual positions p; —
i.e. the relation between the “measured position,” p;, and the actual position,
p;, is monotonic. Effects of the courier angle, 0, on the output are similarly
neglected. As a result of these assumptions, the error, €;, is linearly related to
the parameter vector k; := [k;o,. . .,kiyg]T and can be written as ¢; = FZ-TkZ',
where I'; is a vector of sine and cosine terms. Neglecting noise and unmodeled
effects, the calibrated sensor output can be written as p; := p; +€;. The sensor
segment pair in either cardinal direction can then be used to independently
compute the angle of the courier:

0, ::Pll—Ps and éy ::le—m’ (4)

where I, is the distance between sensors (9.7 mm), as shown in Fig. 3. In
normal operation, the angles in (4) are averaged to reduce measurement noise,
but here their redundancy is used to form a constraint equation,

9p = (‘?x - Qy)ls . . (5)
= (p1—ps)— (P2 — pa)-
Given a set of M observations, p; ;, indexed by j € {1,..., M}, we con-

struct the overall cost Zju:1(gp,j)2 and find the set of parameters, k;, which
minimize it. Here, the constraint is linear in the parameters and a closed-form
solution exists. Defining the constraint error for a single observation as

Gp; = (P1,j — P3,j) — (P2,j — Paj) (6)

we can rewrite (5) as gp, = gp, + (€1, — e3;) — (e2,; — €4,;). Making explicit
the linear dependence of (3) on k; yields

9p; = 9p; t+ Z FiT,jki = gp, + Lk, (7)

where I'; and k combine the I'; ; and k; into single vectors. This form directly
admits a linear least squares solution. Collecting the data over the index j



leads to G, = ép + Tk, with Gp :=[gp,, - - .,gpM]T, Gp = [Gp,, - - .,ﬁpM]T, and
r:=[y,..., FM]T. The optimal parameter set is then given by
k=T1G,, (8)

where T'T is the pseudo-inverse of T.

3.1.2. Experiments

For this and later experiments, the quality of calibration is evaluated by ex-
amining the residual error vector, computed from the errors in the relevant
constraint equation over the dataset, and also by examining the position error
and angle error vectors, computed by comparing the calibrated platen sensor
outputs to laser interferometer ground truth measurements for each datapoint.
These errors are reported for the calibrated and uncalibrated sensor for com-
parison purposes, and error magnitudes are reported in terms of the standard
deviation of the error vector elements.

Using an open-loop controller, the courier was moved to a series of uni-
formly distributed random (z,y, ) positions over a range of 0 < z,y < 10p
and —0.5° < § < 0.5°. The output of the data collection routine consisted of a
vector of platen sensor outputs for each of 1000 courier positions.

Using this dataset, I' and G, were constructed from p using the method
described in Sec. 3.1.1. To confirm the identifiability of k&, the condition num-
ber of I' was computed and found to be small® (about 8) suggesting that the
parameters were sufficiently excited by the data. The impact of the remaining
unmodeled effects was computed by evaluating the residual error, r :=T'k —GNP.
Using the identified parameters, the residual was 4.1 pm, significantly smaller
than the 29.3 ym residual using a zero vector for k, but still higher than the
sub-micron resolution of the sensor.

To examine the generality of &k, the courier was commanded to move a
distance of 40 mm passing through the calibration area. For this fly-by test,
the residual decreased from 12.1 um to 5.5 um with calibration, indicating that
k was also valid over this dataset. To provide an independent verification and
better characterize the performance of the autonomous calibration, retroreflec-
tors were mounted on the courier, allowing a laser interferometer to precisely
measure two axes. The 40 mm fly-by test was repeated, and the translation
along the direction of motion and rotation in the plane were sampled by both
the interferometer and platen sensor. Using the interferometer measurements
as ground-truth, the sensor translation errors are shown in Fig. 5 and the errors
for each of the sensor angle measurements are shown in Fig. 6. The position
error decreased from 8.9 um to 6.5 ym with calibration. The error of 8, stayed
about the same at 0.4 mrad, while the error of f, decreased from 1.2 mrad to
0.4 mrad with calibration.

Although the autonomous calibration does yield a nominal improvement
in position error and an improvement in the 6, angle error by a factor of 3,
there is a significant systematic error in 6, that does not decrease. For this
test, the courier moves in the y direction, nominally leaving fixed the outputs

2As the arbitrary offset parameters ki o cannot be individually identified, the condition
number computation considered only their sum.



uncalibrated
calibrated

position error [um]
o

position [mm]

Figure 5. Position error in direction of motion during motion through platen
sensor calibration region (indicated by dashed lines).
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Figure 6. Angle error during motion through platen sensor calibration region.

of the sensors that measure motion in the z direction, which are also used
to compute @,. Errors in 6, are therefore best explained as an unmodeled
dependence of the output on lateral position. As these lateral dependencies are
roughly the same size as the residual errors and are unmodeled by (3), they
are likely to be limiting further error reduction. However, the structure of the
constraint equation (5) makes it difficult to distinguish lateral dependencies of
one sensor segment pair from translational effects of the perpendicular sensor
segment pair.
3.2. Dual sensor autonomous calibration
In hopes of identifying these lateral effects, the coordination sensor can be used
to provide additional constraints. However, the precise mounting position and
other parameters of the coordination sensor are not known. In this section,
the autonomous calibration method is applied to the calibration of both the
coordination sensor and an extended model of the platen sensor.

To model the lateral motion effects, the platen sensor models are aug-
mented with additional parameters based on their lateral motion

el = e+ kigsin(f(py —! @) + ki110cos(f(py — Lo 6?))
6/2 = €9 —|— ]{7279 Sil’l( ( l q)) —|— k2,10 COS( ( l q)) (9)
e5 = e3+ksosin(f(py +1,0)) + k3 10cos(f(py +1.0))
e, = es+kaosin(f(pe —1:0)) + kar0cos(f(pz — ,0)),
where p, = (p1+p3)/2 and py = (p2+Pa)/2 are the average of the uncalibrated



sensor readings along each axis, and @ is the average of the uncalibrated angle
measurements computed as in (4). The error of each sensor segment is now
dependent on the measurements of the other segments.

Although the coordination sensor requires internal calibration for elec-
tronic gains, mounting inaccuracies, optical distortions, and PSD nonlinear-
ities, we assume for now that these effects have been calibrated® so that it
outputs a perfect measurement of the angles to the LED beacon (1, and ).
Assuming a stationary beacon, the motion of the sensor is given by

¢z = htan(y,) and ¢y = htan(yy). (10)

As the coordination sensor supplies two additional measurements, two
more constraint equations can be derived. A physically meaningful constraint
is to equate the displacements of coordination sensor (¢g, ¢,) with that of the
platen sensor (ps, py)

ge| | —Ps + cos(é)cx — sin(é)cy -1 sin(é) + 1, cos(é) + ol (11)
9y —py +sin(0)cy + cos(f)cy + 1y cos(0) + I, sin(0) + oy,

where ¢;, ¢, are relative to coordinate frame C' shown in Fig. 1, which has a
stationary origin under the LED beacon but rotates with 6. The platen sensor
positions p; 4 are relative to stationary coordinate frame P, and are simply the
average of the two platen sensor measurements in each direction. Parameters
[, and [, are the physical offsets between the centers of the two sensors as
measured on the body of the courier, while offsets o, and o, account for the
arbitrary zero position of the platen sensor. The angle of the courier, é, is the
average of 0, and 0, in (4).

These constraint equations contain five new parameters to be identified
(h,ls,ly,00,04), in addition to the platen sensor parameters (ki, ks, ks, ka).
The three constraint equations g., gy, and g, are combined by taking the sum
of their squares to provide a scalar valued function for minimization.

3.2.1. Experiments
The courier was positioned so that the coordination sensor was directly under
an LED beacon and was moved to a series of uniformly distributed random
(z,y,0) positions over a range of 0 < z,y < 2p and —1.5° < 6 < 1.5°. In
this case, courier rotation was about the center of the coordination sensor in
order to minimize the effects of coordination sensor nonlinearities. The output
of this data collection process consisted of a vector of platen sensor outputs, p,
and coordination sensor outputs, (vs,%y), for each of 1000 courier positions.
Using this dataset, a cost function J = Zj (gfm» —|—g§7j —}—g;j) was computed
using the procedure described above. As the constraint equations are non-linear
in the parameters, definitive testing for identifiability of parameters is difficult.
The condition number of a numerically computed linear approximation of the
second derivative of J was examined at both the initial parameter and the
calibrated parameter results, and was very large at both (8.11 x 10® and 3.38 x
108 respectively). The largest singular value was also large (at least 5 x 10*

3In practice these parameters would be identified prior to integration with the courier.
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Figure 7. Constraint equation errors during motion through dual sensor cali-
bration region.

for both cases), suggesting a stiff system rather than completely unidentifiable
parameters. To investigate further, a synthetic data set was generated using
nominal parameter values and Gaussian noise added to the sensor outputs.
The cost function, J, was used with a BFGS Quasi-Newton method with a
mixed quadratic and cubic line search procedure* and identified the correct
parameters to within 20 ym for h,l;, and l,, and within a micron for the
remaining parameters, even with initial errors of 5% for the coordination sensor
parameters, 3 um random errors in the platen sensor parameters, and all sensor
readings corrupted by 1.0 um standard deviation Gaussian noise.

Encouraged by the simulation results, the same cost function and mini-
mization routine were applied to the experimental dataset. To provide a good
initial parameter vector, the platen sensor autonomous calibration results were
used to initialize the basic set of platen sensor parameters, while the coor-
dination sensor parameters (oz, oy, lz, ly, h) were initialized by minimizing
a partial cost function J' = Z].(g;j + gij) with the platen sensor parame-
ters fixed. With these initial parameter estimates, the complete cost, J, was
minimized over the full set of parameters, including the lateral effect terms
(ki,9, ki 10). The residuals of the three constraints (gr, gy, gp) Were computed
at the initial and final parameter vectors, with values (8.4, 31.6, 4.2) um and
(8.06, 25.2, 5.19) pm, respectively. The main change is a decrease in g,, which
includes the large lever-arm term [, sin(f) (with {; &~ 90 mm) and is very sen-
sitive to the angle error of the platen sensor. To test the calibration over a
different dataset, residuals for the three constraints were measured using the
calibrated sensor outputs for an 8 mm flyby through the calibration area, shown
in Fig. 7. The errors in g, and, to a lesser extent, g, vary systematically with
tooth pitch, indicating unmodeled platen sensor errors. However, the g, er-
ror varies gradually over multiple pitches, suggesting unmodeled coordination
sensor effects.

The laser interferometer was again sampled to provide an independent ver-
ification for a fly-by of 8 mm, while simultaneously sampling the platen sensor
and coordination sensor outputs. The platen sensor position error (using the
interferometer as ground truth) decreased from 7.3 ym uncalibrated to 4.4 ym
using the initial parameters from the separate calibrations to 2.9 pum for the
final calibration, a significant improvement. The error of §, (using the moving
sensor segment pair) decreased from 1.4 mrad uncalibrated to 0.40 mrad for

4The fminu function in Mathworks Inc.’s Optimization Toolbox for Matlab.
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Figure 8. Position error in direction of motion during motion through dual
sensor calibration region.
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Figure 9. Angle error during motion through dual sensor calibration region.

the separate calibration, but increased slightly to 0.43 mrad for the combined
calibration. The error of 6, (using the nominally stationary sensor segment
pair), which was expected to decrease when adding the lateral platen sensor
parameters, remained small but increased from 0.13 mrad uncalibrated to 0.17
mrad for the separate calibration to 0.30 mrad for the combined calibration. In
addition, the identified values of the k; o, k; 10 parameters were all under 2 ym,
which were smaller than the lateral effects seen in previous data, strongly sug-
gesting that these less significant parameters are not being correctly identified.

4. Conclusions

Experiments showing the autonomous calibration of the two planar robot sen-
sors demonstrated a marked improvement in accuracy by a factor of three, to
a level of 3 ym in translation and 0.4 mrad in rotation, a level of accuracy com-
parable to results of an interferometer-based calibration [3]. However, these
values are significantly higher than the 0.2 ym sensor resolutions. Two effects
are limiting further accuracy improvements. First, the platen teeth are as-
sumed to be uniform, but actually have significant manufacturing deviations.
Using interferometer position measurement errors of the platen sensor over a



series of seven teeth to compute an average sensor error waveform gave an er-
ror from platen tooth variations of 1.9 pym. Further accuracy improvements
would require a global model of the platen or more uniform platens — which are
currently under development in our laboratory. The second limitation is from
unmodeled nonlinearities in the coordination sensor. Although the experiments
were designed to keep the coordination sensor angles small, it was necessary
to move several pitches for identifiability reasons, and even this small motion
seems to have produced errors of several microns, as shown in the g, error in
Fig. 7.

We intend to calibrate the internal coordination sensor parameters and
re-attempt identification of the lateral effect parameters of the platen sensor.
In addition, we are currently applying the autonomous calibration technique
to calibrate the force output of the redundant planar linear motor actuators.
Preliminary results indicate improvements in both force ripple and linearity.
Finally, we are integrating the improved models into the closed-loop controllers,
enabling improved high-performance operations.

Acknowledgements

We wish to thank Ralph Hollis, Zack Butler, Michael Chen, and Jimmy Ma for
their contributions. This work is supported in part by NSF grants DMI1-9523156
and DMI-9527190. Quaid is supported by a Lucent Technologies fellowship.

References
[1] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Agile Assembly Architecture: an agent

based approach to modular precision assembly systems,” in Proc. IEEE Int’l Conf.
on Robotics and Automation, pp. 1511-1516, April 1997.

[2] E. R. Pelta, “I'wo-axis Sawyer motor for motion systems,” IEEE Control Systems
magazine, pp. 20-24, October 1987.

[3] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Integrated precision 3-DOF posi-
tion sensor for planar linear motors,” in Proc. IEEE Int’l Conf. on Robotics and
Automation, 1998.

[4] W.-C. J. Ma, “Precision optical coordination sensor for cooperative 2-DOF
robots,” Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, 1998.

[5] A. E. Quaid, Y. Xu, and R. L. Hollis, “Force characterization and commutation
of planar linear motors,” in Proc. IEFE Int’l Conf. on Robotics and Automation,
pp. 1202-1207, April 1997.

[6] D.J. Bennett and J. M. Hollerbach, “Autonomous calibration of single-loop closed
kinematic chains formed by manipulators with passive endpoint constraints,”
IFEFE Transactions on Robotics and Automation, vol. 7, no. 5, pp. 597-606, 1991.

[7] J. M. Hollerbach and D. M. Lokhurst, “Closed-loop kinematic calibration of the
RSI 6-DOF hand controller,” in Proc. IEEE Int’l Conf. on Robotics and Automa-
tion, (Atlanta, GA), pp. 142-148, May 1993.

[8] R. M. Voyles and P. K. Khosla, “Collaborative calibration: Extending shape
from motion calibration,” in Proc. IFEFE Int’l Conf. on Robotics and Automation,
(Albuquerque, NM), pp. 2795-2800, April 1997.



