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Abstract

This paper serves to present our initial thoughts on the
design of an architecture for highly flexible, modular,
and distributed precision assembly systems. Through
the use of a unified design, simulation, program-
ming, and monitoring environment coupled with self-
representing cooperative agents this architecture will
significantly simplify the process of factory design and
deployment. Qur demonstration of this architecture
takes the form of a “table top” sized assembly system
targeted at the partial assembly of high-density mag-
netic storage devices.

1 Introduction

As part of a multi-million dollar four-year project
funded under the NSF Multi Disciplinary Challenges
component of the High Performance Computing and
Communication program, this paper documents our
initial thoughts on the development of a miniaturized,
modular, high-precision assembly system or minifac-
tory. We believe this type of system can only be de-
veloped through careful integration of hardware and
software tools in a manner heretofore unseen in the
robotics and automation community. Specifically we
wish to construct a distributed system of tightly inte-
grated mechanical /computational agents endowed not
only with information about their own capabilities but
also with the ability to appreciate their role in the fac-
tory as a whole and negotiate with their peers in order
to participate in flexible factory level cooperation. It is
the formalization of these basic ideas that constitutes
our notion of an Agile Assembly Architecture (AAA).

AAA will use factory-wide standard procedures,
protocols, and well structured agent autonomy to sim-
plify the process of designing and programming com-
plex high-precision assembly systems. The unified de-
sign and programming tools of AAA will allow a user
to select agents over the Internet and program them
in a simulated factory environment. More importantly,
AAA will take advantage of agents’ self-knowledge and
ability to explore their environments to make the tran-

sition between simulation and reality as painless and
seamless as possible.

To facilitate the design and operation of distributed
systems of this type, every agent in a minifactory will
contain its own computer capable of both represent-
ing itself to its peers and providing detailed models
(both geometric [1] and behavioral) for use in its simu-
lation. To support a suitably extensible simulation en-
vironment we expect to make use of distributed mod-
els and processing by relying on agents (and their as-
sociated computers) to represent their own behavior
during simulation. This mitigates the need to provide
necessarily restricted models for agent behavior and
allows for simplified integration of new types of agents
into AAA. One positive and intentional side-effect of
this approach is that it will be possible to remotely
access (via the Internet) agents which a developer is
considering for inclusion in a factory and “use” them
in a simulation of the system.

Our hope is that AAA and minifactory can provide
viable high-precision assembly alternatives for indus-
tries that would benefit from drastically reduced fac-
tory design and deployment time. The aim of the cur-
rent project is to demonstrate the application of this
assembly technology to the partial assembly of high-
density magnetic data storage devices. More gener-
ally, minifactory is suitable for use in the production of
short lead time products consisting of moderate sized
high-precision parts and assemblies.

Section 2 of this paper offers a brief overview of the
capabilities and advantages central to the minifactory.
Section 3 presents an overview of the issues involved in
the development of the design, simulation, and moni-
toring tools we foresee being necessary to support the
rapid design, deployment, and programming of mini-
factory systems. Section 4 addresses the architectural
requirements placed on the individual agents to allow
their smooth integration into a minifactory system. Fi-
nally, Section 5 offers a brief overview of the robotic
sensing and motion technologies under development in
the Microdynamic Systems Laboratory! for use in the
current project.

1See hhtp://wwu.cs.cmu.edu/~msl



2 What is a Minifactory?

We have deliberately chosen the scope of capabilities
we wish a minifactory to perform to afford both ana-
lytic tractability and design practicality. Toward this
end we have limited the class of tasks we will perform
to assembly and processing operations requiring four
or fewer degrees of freedom. Specifically we want to
construct systems capable of:

¢ Four-degree-of-freedom vertical insertion.

e Basily integrating overhead processing (e.g. laser
processing or material/glue deposition).

e Micron-level part placement accuracy.

e Factory design and programming in less than a
week.

To provide this functionality, a minifactory consists of
a potentially large collection of mechanically, computa-
tionally, and algorithmically distributed agents. Each
agent in this collection is responsible for providing a
minimum level of cooperation and communication in
order to participate in the most basic minifactory op-
erations, thereby simplifying the development and de-
ployment of the system.
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Figure 1: Basic components of a minifactory.

The most obvious departure from traditional au-
tomation systems and one of the most obvious embodi-
ments of our philosophy of factory level integration can
be seen in our choice to integrate product transfer and
local manipulation. As such, we have eschewed the tra-
ditional use of SCARA manipulators coupled with part
conveyor systems and local fixtures. Alternatively, as
depicted in Figure 1, we have chosen to make use of

two-degree-of-freedom (DOF) manipulators (MANIPU-
LATORS) and two-DOF planar manipulators (COURI-
ERS) moving over a high-precision platen surface. The
COURIERS are thus responsible both for product trans-
port within the factory and for transiently forming co-
operative four-DOF manipulators when they present
sub-assemblies to a stationary MANIPULATOR.

This approach to providing a four-DOF capability
has a number of advantages [6, 8]:

e Precision: Joint flexibility, link flexibility, sen-
sor precision, etc. all limit the accuracy of serial
linkage based systems.

e Speed: Lower masses of the individual manipu-
lators affords greater acceleration. Additionally a
MANIPULATOR can begin to prepare for the arrival
of a new COURIER while the COURIER it had been
interacting with is performing the next operation
on its product.

e Flexibility: Mechanical and electrical modular-
ity allows easy integration of semi-custom process-
ing elements (e.g. screwdrivers, orbital head for-
mers, glue dispensers, laser processors, etc.).
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Figure 2: View of a “typical” section of a minifactory
assembly system, including a “tee” junction.

Perhaps the best way to appreciate the implications
of this approach to the design of factory level assembly
systems is to consider a somewhat contrived but illus-
trative example. Figure 2 depicts a view of a small
section of a fictitious minifactory. The system pic-
tured includes six COURIERS and three MANIPULATORS
with two bulk-random parts feeders and one precision
feeder. COURIERS begin on the left of this system,



present their sub-assemblies to the first two manipula-
tors where two new components are added; the resul-
tant sub-assemblies then travel to the right where the
final manipulator is responsible for both placing a pre-
cision component and transferring the final assembly
to one of four COURIERS.

3 User-Level Design, Program-
ming, and Monitoring Tools

A minifactory program is not a centralized list of com-
mands describing the global operation of the assembly
system. Rather, each agent, whether it be a COURIER,
MANIPULATOR, or other custom robot, is an indepen-
dent entity executing its own program. The overall
minifactory behavior results from each agent interact-
ing both with its environment and peers. The central
challenge for the minifactory simulation and program-
ming environment is to facilitate the development of
well debugged distributed programs, while simultane-
ously easing the difficult transition from the simulated
world of bytes and pixels to the real world of actuators
and sensors.

In the absence of a centralized controller, a mini-
factory will have a centralized user interface tool capa-
ble of supporting the design, simulation, and run-time
monitoring and control of a minifactory.

3.1 Design and Programming

The goal of the minifactory programming environment
is to simplify the difficult problem of integrating the
components of a factory and generating the detailed,
interacting programs for every agent in the system.
A minifactory system should be designed and pro-
grammed by an expert in the assembly problem at
hand without requiring expertise in minifactory pro-
gramming.

Following current trends in the field of machine pro-
gramming, e.g. [5], the design and programming of a
minifactory will be primarily graphical, with as little
text interaction as possible. Users should be able to
point, click, and drag their way through an intuitive
visual interface to create a distributed minifactory pro-
gram. Within this framework we foresee the use of con-
straints, such as local frames of reference, and abstrac-
tions, such as coordinating the gross motion of COURI-
ERS through the use of distributed resource manage-
ment rather than considering it as a global allocation
problem. Such a use of constraints guides the user to
construct robust systems while abstractions hide de-
tails that the user cannot afford to be concerned with
if correct programs are to be rapidly built.

The most significant constraint in a minifactory pro-
gram is that all geometric references will be made with
respect to physical components of the factory, such as
MANIPULATORS or feeders. Thus, programs become

naturally robust to minor variations in the geometric
configuration of an actual factory, presuming that the
topological relationships between factory components
are maintained.
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Figure 3: Schematic example of reservation areas for
the factory of Figure 2.

We abstract the management of the point-to-point
motion of agents through the use of a geometry reser-
vation system. Agents are free to move in previously
reserved areas, which are Q%D volumes in which an
agent and its cargo are guaranteed to be safe from
collision with other components of the minifactory. As
with all geometric references in a minifactory program,
the geometry of a reservation area will be be anchored
to various elements of the factory. For example, as
shown in Figure 3, Corridor A forms a reservation area
with ends anchored to Manipulator A and Manipula-
tor C. Thus, a user can specify the gross movement
of a COURIER by selecting (or creating) reservation ar-
eas in sequence, interspersed with “rendezvous” areas
(e.g. the areas under the MANIPULATORS in Figure 3),
where the COURIER will interact with other agents.

This approach to geometry management and gross
motion planning provides several advantages to the
user:

e Abstraction: The user does not have to
specify that a specific COURIER must explicitly
contact some other COURIER and/or MANIPULA-
TOR for permission to move into a manipulator’s
workspace; all of these negotiations are hidden
through the use of a reservation area.

e Modularity: Rather than a MANIPULATOR
knowing it has to interact with a particular
COURIER, it just has to know that it interacts with
whatever COURIER has reserved its workspace.

e Robustness: Since the reservation areas are ref-
erenced to physical components of the factory, if
these components move slightly, the various agent
programs will continue to function properly.



3.2 Simulation

Minifactory simulations allow a user to explore the ap-
plication of minifactory technology to a particular as-
sembly problem, and to do much of the development
and debugging of the factory programs off line in a
virtual environment. A key to a minifactory’s rapid
and successful deployment is the rapid and successful
transition of a factory program from this virtual en-
vironment to the actual machines. The two facets of
our architecture that make this transition possible are
fidelity of the simulation and robustness of the under-
lying agents. Fidelity demands that the simulated fac-
tory will behave identically to an actual factory config-
ured in exactly the same way. Robustness of the agents
acknowledges the inability to configure an actual fac-
tory in exactly the same manner as it was simulated,
but that we can detect and account for the differences.

We achieve fidelity through the agents’ self knowl-
edge and self representation. Each minifactory agent
provides a representation of its own geometry, behav-
ior, and integration constraints. Thus, the simulator
will not use a catalog to look up the characteristics of a
typical MANIPULATOR, but rather will query an actual
MANIPULATOR via an Internet connection for its own
self-representation. This reliable representation of an
agent’s characteristics will eliminate many inaccuracies
that would otherwise occur. Robustness is provided by
the ability of the agents to self-calibrate and explore
their environment (as described in Section 4.2). Since
geometric references are anchored to features in the
environment, the effects of any discovered differences
between the actual factory configuration and the sim-
ulated factory simulation are eliminated.

Additionally we foresee simplifying the transition
from simulation to reality by allowing mixed operation
of the simulation system in conjunction with running
hardware. In full simulation mode, most of the agent
models and programs will be internal to the simula-
tion environment itself, each of them having been con-
structed from the description provided by the agents
themselves. In practice there is no reason beyond effi-
ciency why the implementation of these agent models
could not be performed by the remote agents them-
selves rather than internal to the simulator. Thus,
simply by mixing internal agent models and external
agents, a real agent could be put through its paces in
isolation, with all its actuators working and sensors
gathering data, but within the context of a greater
simulated system.

3.3 Real-time interaction

The interface tool will not just support the design and
simulation of a factory — it will also monitor an oper-
ating factory. Rather than serve as a central “brain”
for the system it will act as a clearing house for status,
errors, and product information.

The interface tool’s primary role in a running mini-

factory is to present views, on several levels, of what
is currently happening in the factory as reported by
the agents. The major view will be an annotated 3D
representation of the factory as a whole, showing the
product flow through the system. The user will also be
able to select any agent in the system and bring up its
“control panel.” The content of these control panels
will range from concrete physical properties such as
joint angles and accelerations to abstract behavioral
properties such as programs and errors in achieving
goals, but the specific content and how these views are
updated is determined by the agents themselves rather
than the interface tool. The self description of the con-
trol panel provides a level of flexibility and extensibility
that would be impossible if the interface tool just had
standard control panels for standard components.

Beyond passively presenting factory and agent oper-
ations to the user, the interface tool will actively mon-
itor the state of the whole system to look for problems
and conflicts. These problems could be physical, such
as collisions between COURIERS, but more commonly
they will be “logical,” such as overlapping reservation
areas. In addition, the interface tool will monitor and
store product information such as part counts, defect
rates, flow rate, etc. This information can be stored
for later analysis both to improve the assembly plan in
the future and as a record of how the assembly process
went.

4 Run-Time Coordination and
Communication

Any minifactory agent, be it a COURIER, a MANIPULA-
TOR, or some custom designed module, must provide a
minimal level of capability in order to work in the mini-
factory. Currently we foresee there being four general
classes of capability every agent must reliably provide:
basic trustworthiness, self initialization, resource nego-
tiation, and inter-agent coordination.

4.1 Basic Trustworthiness

For an agent to be a successful member of a factory
community its peers must be able to trust it to reliably
represent itself. Practically, we see this manifesting
itself in the form of three fundamental capabilities.

e All agents must advertise their basic capabilities
and the protocols they understand to their peers.

e Every agent must be capable of reporting its cur-
rent status and location.

e Each agent must implement reliable and safe fail-
ure detection and recovery schemes.

The first two of these requirements are essential
to support graceful coordination between minifactory
agents, their peers, and factory monitoring tools. The



need to advertise capabilities further implies the exis-
tence of a predefined extensible protocol suitable for
the exchange of such information between agents. The
next two capabilities may well be the most important,
and quite possibly the most difficult to precisely define
and implement. The assertions demand that agents be
capable of constantly monitoring the state of the fac-
tory available to them. Furthermore, when an agent
detects conditions outside the norm it must be capable
of independently correcting the aberration, negotiating
with its peers to recover from the fault, or broadcast-
ing its inability to proceed thus bringing the factory to
an orderly stop. Although it is potentially difficult to
guarantee this level of capability in an arbitrary agent
we feel that through judicious use of a combination
of traditional AT reasoning [7] and reactive behaviors
[4] that it can be achieved in the highly-constrained
domain of minifactory.

4.2 Factory Calibration/Initialization

Integral to the rapid deployment of an assembly sys-
tem is the need for precise and automatic calibration
and initialization whenever a factory is “turned on.”
There are three interrelated tasks that must be col-
lectively undertaken by the minifactory agents to suc-
cessfully initialize a factory system. This process will
begin with agents identifying their peers through the
use of messages broadcast to the factory at large. Fol-
lowing this, COURIERS must explore their environs to
discover both the exact geometry of the platen sur-
faces, as well as the positions of any stationary agents
within their range. Finally, through a careful exchange
of this information between agents, a complete map of
the minifactory can be constructed both in the agents
and the monitoring interface tool. At this point, the
interface tool can distribute programs developed for
simulated agents in a simulated system to the appro-
priate real agents in the minifactory and those pro-
grams can be verified and registered against the newly
discovered geometry of the minifactory.

It would be impractical, if not impossible, to assem-
ble a real minifactory that corresponds to within mi-
crons of an equivalent simulated minifactory. Without
self calibration and exploration, transferring programs
from the simulation environment to the real minifac-
tory would involve the painstaking process of rewriting
and calibrating all of the agent programs. With self-
calibration and local frames of reference, agents can
accommodate minor variations in factory construction
and detect major variations which might invalidate
their programs.

4.3 Resource Negotiation

As introduced in Section 3, we chose to make indi-
vidual agents both capable of and responsible for ne-
gotiating for the use of shared resources. This has
significant implications for the gross motion of agents,

as the primary resource in contention will be space on
the platen surfaces. To both simplify factory level pro-
gramming and ensure safe operation, we are propos-
ing the use of a distributed reservation-based scheme
to resolve these types of conflict. This approach re-
quires that we make the assumption that an agent will
only go where it says it will go, and that there are no
“outside” influences which fail to reserve the resources
they consume. These assumptions — which are rea-
sonable in the highly structured, very stable, and well
known minifactory environment — allow us to dispense
with the inter-agent perception systems that would be
necessary to implement completely “reactive” motion,
in which agents would be required to observe other
agents’ positions and intentions (either with sensors
or by querying) prior to taking action. The low cost
and predictable behavior obtained through the use
of a reservation system far outweighs the risk of our
assumptions being violated and the minor efficiency
losses which will inevitably be incurred.

We also foresee using a similar distributed reser-
vation system to arbitrate the consumption of more
abstract resources such as vibration, noise, thermal, or
optical emissions. The use of these reservation schemes
depends on the trustworthiness of agents, i.e. that they
can both know and advertise what resources they re-
quire and are consuming.

4.4 Agent Coordination

Critical to the successful application of a distributed
machine of this class is the capability for agents to
reliably interact and coordinate their activities. We
envision these local interactions taking place through
standardized protocols between small groups of agents
(typically two). The most fundamental form of this
cooperation will happen whenever a COURIER and MA-
NIPULATOR transiently form a four-degree-of-freedom
system to perform a part placement task. The most
basic mode for such cooperation will take the form of a
virtual linkage between two machines where one agent
is effectively slaved to the state of the other, allowing
for simple coordinated movement. Other modes of co-
operation will include coordinated behavior changes
and cooperative sensor-based alignment. Behavior
changes would be used to encode the sequence of op-
erations necessary for a high-precision force-controlled
insertion task (e.g. MANIPULATOR exerts low vertical
force while coURIER “finds” the hole, followed by the
COURIER becoming compliant while the MANIPULATOR
exerts higher forces to perform the insertion).

5 Robotic Sensing and Motion
Technologies

In parallel with the development of architectural ap-
proaches to multi-agent coordination and factory de-



sign presented in Sections 3 and 4 we are also con-
structing machines of the form depicted in Figures 1
and 2.

The first and possibly most critical technology un-
der development is the precision control and sensing for
COURIERS [9]. Toward this end, we are pursuing two
potential local sensing technologies, one magnetically
based, the other optical. In principle, either can de-
liver the needed micron level resolution. A prototype
of the magnetic sensor is currently under evaluation,
and we expect to evaluate a prototype of the optical
sensor in the near future [3].

Unfortunately COURIERS require tethers for the sup-
ply of both power and air. This both complicates mo-
tion planning for the COURIERS as well as forcing the
inclusion of additional mechanisms and fixtures to sup-
port the transfer of partial assemblies between COURI-
ERS. Implicitly this results in a limit on the total num-
ber of couriers which can be active in a particular re-
gion of a minifactory thus imposing an upper bound
on the overall efficiency and throughput of a system.

Concurrent to the development of COURIERS, work
is being done to design both the MANIPULATORS and
parts feeding subsystems. While the design and con-
struction of a MANIPULATOR may not seem particu-
larly complex, there are a number of issues which must
be addressed to achieve the desired positioning resolu-
tion and accuracy. Not surprisingly, the design of gen-
eral purpose part feeding systems is quite complex and
has been the topic of significant independent research
[10, 2]. Our project is beginning to explore potential
solutions that fit our application needs.

Finally, it is critical to provide suitably scal-
able computational and network resources through-
out the minifactory environment for both user com-
mands/monitoring, and inter-agent coordination. We
have chosen to provide these capabilities through the
use of two network ports per agent: one for factory
wide non-real-time communication, and the second for
local real-time coordination and communication.

6 Conclusion

This paper represents a first effort to introduce our
vision of the future of high precision assembly, we see
this distributed approach to factory design, modeling
and control affording a number advantages:

e Modularity: Segments of a minifactory can be
modified or expanded with minimal impact on
neighboring parts of the factory.

e Robustness: Mechanical and computational dis-
tribution allows for natural local error detection
and recovery.

e Scalability: Congruency between the computa-
tional and mechanical systems removes the tra-
ditional bottlenecks associated with a centralized

model of factory control. In fact the information
flow and programs are as distributed as the ac-
tual product flow leading to a natural symmetry
between their management.

o Ease-of-use: Unified design and development
tools in conjunction with capable agents will dras-
tically simplify the process of designing, program-
ming, and debugging an assembly system.
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