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Abstract

A distributed cooperative coverage algorithm DCpg
1s presented which is derived from an earlier complete
single-robot algorithm, CCg. DCpg executes indepen-
dently on each robot in a team where the individual
robots do mot know the initial locations of their peers
and applies to systems of robots operating in a rectilin-
ear environment that use only intrinsic contact sensing
to determine the boundaries of the environment. Due
to the reactive nature of CCg, the natural extension
to DCg preserves the completeness properties of the
single-robot algorithm and the outline of a complete-
ness proof of DCg is also presented. DCgr has been
implemented in simulation, and directions for future
work are presented which will make the algorithm more
suited to physical robot systems.

1 Introduction

The ability to completely cover an environment, and
to plan a path to do so, is a valuable capability for
robot systems. Tasks such as mine detection, floor
cleaning, and others are essentially coverage tasks, in
which a robot must pass a sensor or effector over every
point in its environment. Often the robot will not have
a priori knowledge of its environment, and so will need
to plan its path as it travels to ensure complete cov-
erage. This task is called sensor-based coverage. Like
coverage of known environments, its implementation
depends on the capabilities of the robot performing
the coverage task, and a variety of solutions have been
proposed. In addition, operations such as mine de-
tection may involve a team of robots, and it would
be desirable for them to work together to efficiently
produce complete coverage.

In general, for a single robot, sensor-based coverage
is begun by assuming the environment to have a spe-
cific simple shape. The robot then executes a simple
coverage path until it discovers evidence that contra-
dicts the initial assumption, at which point one of sev-
eral strategies is used to ensure coverage on all sides of
the newly discovered obstacle. An algorithm presented
by Lumelsky et al. in [1] and extended in [2] produces
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Figure 1: A small section of a minifactory, showing
typical components.

coverage of C? environments for robots with finite non-
zero sensing radius. It is a scripted algorithm that re-
cursively builds a subroutine stack to ensure covering
all areas of the environment and does not explicitly
build a map. In contrast, work presented by Acar in
[3] based on a planned coverage strategy outlined in
[4] incrementally builds a graph based on a cellular
decomposition of the environment. This introduces an
element of planning into the coverage process — when
a cell has been covered, the robot uses the structure of
the graph to plan a path to an unexplored area, and
when the graph has no unexplored edges, coverage is
complete. The cell decomposition approach of [4] also
inspired the algorithm presented in [5], which in turn
is the basis for the current work. In [5], an algorithm
CCp is presented for coverage of rectilinear environ-
ments using only contact sensing. An outline of the
behavior of this algorithm is presented in Sec. 1.1.

In contrast to the more commonly studied coverage
tasks mentioned above, the motivation for the current
work comes from a manufacturing environment. The
minifactory, an automated assembly system under de-
velopment in the Microdynamic Systems Laboratory!,
is built within a framework that provides for rapid de-
sign, programming and deployment [6], and is targeted
at assembly of small electromechanical products such
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as mobile telephones, disk drives and small medical de-
vices. A minifactory, a small example of which can be
seen in Fig. 1, consists mainly of overhead processors
and couriers, small tethered robots that operate on
a set of tileable platens which form the factory floor.
The robots are computationally independent but use
common network protocols and standardized algorith-
mic interfaces for ease of programming and to enable
real-time cooperation to perform assembly tasks. In
order to quickly deploy such a system and bring it to
full production, the deployment process must be done
without cumbersome manual calibration. The system
will therefore need to be capable of self-calibration.
To accomplish this, the couriers use upward-looking
optical sensors to locate beacons on all overhead de-
vices and intrinsic contact sensing to determine platen
geometry. While calibration could take the form of
simply verifying the location of all expected overhead
devices and platens, a complete coverage of the fac-
tory area makes the calibration process more robust.
In addition, having the couriers explicitly cooperate
in this task would decrease the setup time, motivating
the research presented here.

While the algorithm presented here is capable of
minifactory calibration, it is also applicable to a some-
what greater variety of robot systems. Specifically, it
applies to teams of rectangular robots with intrinsic
contact sensing operating in a shared, connected recti-
linear environment with finite boundary and area. In
addition, the robots in the team will not know their
relative initial positions or orientations, however, due
to the structure of the environment, their orientation
will be one of four distinct values (i.e. with axes aligned
with the environment boundaries) and cannot change.

Most previous work with cooperative mobile robots,
even where exploration is addressed, does not include
complete coverage of an environment. Work that does
has used a central controller deploying robots from a
known location, which is not satisfactory for the mini-
factory problem. Gage’s work [7] uses random walks
by a large team with a common home position to gen-
erate probabilistically complete coverage. A fairly ab-
stract algorithm presented by Rao et al. [8] uses a small
team of point-sized robots with infinite range sensing
to cooperatively build a visibility graph of a polygo-
nal environment. In contrast, work by Rekleitis et al.
[9] uses cooperating robots with mutual remote sens-
ing abilities, but with explicit cooperation to reduce
mapping errors rather than to increase efficiency.

1.1 Single-robot algorithm

The cooperative work presented in this paper is
based on a single-robot coverage algorithm CCg, pre-
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Figure 2: A cell decomposition as created by CCg,
also showing a portion of a seed-sowing path.

sented in [5]. Using CCRg, a single robot with only
intrinsic contact sensing can cover any finite rectilin-
ear environment. Coverage is performed by incremen-
tally constructing a cellular decomposition of the en-
vironment (C) and using only the structure of C' to
determine the coverage path. An example of the type
of cell decomposition built by C'Cg is shown in Fig.
2. Each cell is as wide as possible in z while having
straight floor and ceiling (minimum and maximum y
extents). The left and right sides are therefore at in-
teresting points, which correspond to the z values of
vertical boundary segments. The sides of each cell are
represented by a list of intervals, which describe the
locations of walls, cells, and placeholders adjacent to
the cell. Placeholders, line segments that signify the
entrance to an unexplored region, are also part of C.

At each execution cycle of CCg, the map interpreter
(one half of the CCg algorithm) first inspects C' to de-
termine the next appropriate straight-line motion to
continue coverage. This motion is then executed with-
out interruption from CCg, stopping only at a colli-
sion or after an appropriately chosen distance (these
occurrences are referred to as coverage events). After
a coverage event has occurred, the event handler (the
other half of CCg) updates C' appropriately given the
type of event and the robot’s position, p. C is then
inspected again and a new motion is determined.

To cover each cell, the map interpreter generates
a seed-sowing path as in Fig. 2, in which the robot
travels along paths (called strips) which are parallel to
its y axis and as far apart as the width of the robot.
These continue until an interesting point is detected.
The interesting point is then localized and the final
edge of the cell is explored. This behavior is generated
by a set of rules in the map interpreter, which, after
each trajectory, are tested against C' and p. The first
applicable rule determines the next trajectory (both
direction and distance, the distance chosen so that a
change of direction would be required if that distance
was traveled without collision). Rules for interesting
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Figure 3: A schematic rendition of the algorithm DCp,
which is built around a slightly modified version of the
single-robot algorithm CCpg, a copy of which is run
independently by each robot performing coverage.

points are tested first, followed by the seed-sowing rule,
followed by rules for when the cell containing p is com-
plete. In this last case, the robot will return to any
incomplete cell in C, otherwise a new cell will be cre-
ated from an arbitrarily chosen placeholder.

Completeness of CCr is proven in [5] by creating a
finite state machine that represents all possible ways in
which C can evolve under CCg, and then showing that
the FSM has no infinite loops and does not terminate
until coverage is complete.

2 DCpgr: Overview

To extend this coverage skill to a cooperative setting
in which each robot is running independently, CCg
has been modified and enhanced to form a new algo-
rithm DCpg (distributed coverage of rectilinear envi-
ronments). DCEg, shown in schematic form in Fig. 3,
includes a slightly modified version of CCg (denoted
CCru) along with additional components that pro-
vide cooperation with team members without imped-
ing the progress of coverage. In general terms, DCgr
operates by altering the cell decomposition, C, in real-
time in response to messages from other robots. Since
CCru (like CCR) uses only C to plan coverage, it sim-
ply replans in the altered map without explicit aware-
ness of the cooperation taking place.

CCRy is augmented with two components that
handle cooperation to form DCpg. One of these, the
feature handler, extracts features of a pre-specified
type from C' and shares them with other robots in
the team to try to form colleague relationships. Two
robots are considered colleagues if they know the rela-
tive geometric transform between their coordinate sys-
tems. The other new component, the overseer, accepts
incoming map data from all colleagues. Specifically,
each robot sends to the other the geometry of each
complete cell in its decomposition and the location of
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Figure 4: Examples of (a) a generic rectilinear decom-
position and (b) the unique sweep-invariant decompo-
sition of a rectilinear environment.

all beacons it has discovered. It is then the job of the
overseer to add the covered area to C. This addition
allows each robot to avoid covering area already cov-
ered by a colleague, but must be done in a way that
leaves C' in an admissible state for CCgru.

2.1 Cell decompositions under DCg

The most notable effect on C'Cgras due to cooper-
ation is that the class of cell decompositions encoun-
tered is more general than that created by a single
robot. Since the robots in the team may have differ-
ent orientations, the interesting points that define cells
(and therefore which walls constitute floors and ceil-
ings) are not necessarily the same from one robot to
the next. A cell obtained from a colleague may there-
fore be different from any that would appear in the
decomposition that the robot would create on its own.

The class of decompositions that can be constructed
under DCg are referred to here as generic rectilinear
decompositions (GRDs), an example of which can be
seen in Fig. 4a. Cells in these decompositions do not
necessarily border walls on their floor and ceiling, how-
ever, each cell is still rectangular and is a superset of
cells of the sweep-invariant decomposition (SID) of the
environment. In the SID, the boundaries between cells
are determined by walls and obstacle edges in both z
and y. An example of this type of decomposition is
shown in Fig. 4b. It should be noted that while the
SID is unique for a given environment, a GRD devel-
oped under DC'g will depend on the orientation of the
robot and the progress of cooperation. Also, during
the performance of DCFg, the cell decomposition may
at times consist of multiple disconnected components.
This is because robots only share completed cells, but
may meet in an area that neither has completed.

2.2 Changes to CCg

In order for the proof of CCr to be easily carried
over to CCRyr, changes were implemented so that
CCRrp would produce essentially the same behavior
as CCpg over the larger class of decompositions. The
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Figure 5: The effects of an exploration boundary
(dash-dot line) when the robot is in (a) an incomplete
cell and (b) a complete cell.

most significant change required is due to the floors
and ceilings of cells, and therefore the ends of seed-
sowing strips, no longer always being at walls. In order
for coverage to proceed correctly, virtual ezploration
boundaries are placed at the floor and ceiling of each
cell where an environmental boundary does not exist.
These virtual walls have the property of impeding the
robot’s progress only when the robot is in an incom-
plete cell. Therefore, when the robot is covering an
incomplete cell that has a complete cell above or be-
low it, the exploration boundary will act as a real wall
to allow seed-sowing to continue as in CCg, as shown
in Fig. 5a. However, once that cell is complete, the ex-
ploration boundary effectively vanishes and so cannot
hinder any planned path from one cell to another, as
shown in Fig. 5b. The exploration boundaries are cre-
ated by the overseer as described below and can be im-
plemented in a variety of ways depending on whether
DC'g is being run in simulation or on actual robots,
and if the latter, on the robots’ low-level functionality.

The changes required to the event handler are then
simply to add the ability to create and maintain inter-
vals on the floor and ceiling of each cell during cover-
age. Also, while the map interpreter’s rules for cover-
age within a cell remain unchanged, the handling of C'
when the current cell is complete is altered in two ways.
First of all, GRDs may have placeholders aligned with
the z axis as well as y, and the map interpreter must
be able to correctly instantiate incomplete cells from
such placeholders. Also, if C' becomes disconnected
at any time, a path cannot necessarily be planned to
any placeholder in C'. However, there will always be
at least one placeholder that can be reached, as shown
in Sec. 3. The path planner simply searches the list
of placeholders for one that a path can be planned to
and selects that as its destination.
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Figure 6: An example of adding new area by the over-
seer, in which the initial cell decomposition is depicted
in Fig. 6a and the incoming cell N in Fig. 6b. The dot
in each section of the figure represents a common real-
world point.

2.3 Additions to CCgy

With CCgrus in place, the other two components of
DCR can then be added. Of the two, the feature han-
dler has much more flexibility in its design since it does
not directly affect any data structures used by CCrys-
The feature handler uses the data in C' to generate col-
league relationships between robots, however, it does
not alter C. Therefore, the specific features and algo-
rithms used by the feature handler can change from
one system to the next without affecting CCra.

The overseer is responsible for interpreting all in-
coming data and integrating it into the structures used
by CCRras- Since it actively modifies these structures,
its design is much more restricted. The first task for
the overseer when new data arrive from a colleague is
to convert these data (complete cells and beacon lo-
cations) from the colleague’s coordinate system into
its own. It then adds the beacons directly to its own
list after checking for and removing duplicates. How-
ever, it must be more careful about adding the new
cells to ensure that C' remains a valid GRD. The new
cells must not overlap any other cells, as required for a
GRD, and their intervals must point to the correct cells
(or new placeholders), so that path planning will work
correctly. This addition is done in three stages, an ex-
ample of which is shown in Fig. 6. In the first stage,
the incoming cell N is intersected with all complete
cells in C'. Only the area of N that does not intersect
with these cells is retained to be added to C, with N
divided into multiple cells if necessary. In the example,
a single area as shown in Fig. 6¢ is retained after inter-
section with cell Ci. In the second stage, incomplete
cells in C are intersected with this remaining area, but
in this case, the incomplete cells are reduced in area
and split if necessary. This maximizes the amount of



complete area contained in C' while also ensuring the
creation of a valid GRD as described below. The re-
sultant C for the example is shown in Fig. 6d. Finally,
the intervals along the edges of what was NV are each
examined. Intervals that point to walls are retained as
is. Otherwise, if the interval is adjacent to a cell in C,
it is given that cell as its neighbor, and if not, a new
placeholder is created for the interval to point to. In
either of these cases, if the interval is along an hori-
zontal edge, an exploration boundary is created along
the line segment defined by the interval.

3 Completeness Proof Outline

To prove completeness for a coverage algorithm, it is
necessary to show that the coverer will reach all points
in the environment regardless of the form of the envi-
ronment (within certain restrictions). For a coopera-
tive algorithm, it is necessary to show that each robot
will satisfy this requirement and also continue cover-
age while cooperating with its teammates, so that the
team as a whole produces complete coverage. Due to
space constraints, only a summary of the arguments
for completeness of DCg are presented here.

Proposition 1 CCgys inherits completeness from
CCRr and produces complete coverage of any generic
rectilinear decomposition C' in the absence of coopera-
tion that alters the robot’s current cell.

Since CCgpr was specifically designed to exhibit the
same behavior as CCEg, the proof of the progress of
coverage is virtually unchanged from that described in
[5]. Essentially the states of the FSM that describe
CCpgr become more inclusive but not more numerous.
Exploration boundaries ensure that any cell bounded
by another cell on its floor and/or ceiling falls into the
same state as it would if a wall was present instead of
the other cell. The changes to the event handler and
map interpreter described above ensure that all motion
outcomes are handled as in CCg. Therefore, CCrum
generates the same FSM for covering an individual cell
as CCg. Also, this FSM applies to any GRD con-
taining the current cell, since the state is determined
only by the current cell. The proof of CCgy, is com-
pleted by verifying the transitions that occur when the
robot’s current cell is complete. This requires addi-
tional analysis since C' can now become disconnected.

To show that a correct path is always found in this
instance, we define C, as the component of C' contain-
ing the robot’s position p, and note that a path can
always be planned from p to any cell or placeholder in
Cp. If any incomplete cells exist, they must all be in
Cp, because all cells in C that are not in C, must have

been contributed by other robots, and are therefore
complete cells. If there are no incomplete cells in C,
then there must be at least one placeholder adjacent
to Cp. If this was not true, C), would have a closed
boundary and could never become attached to the re-
mainder of C, violating the assumption of a connected
environment.

It is also important to note that the decomposi-
tion created by C'Cgras when working alone is a special
case of a GRD (and the same decomposition that CCr
would generate), and therefore that DCg is complete
for the single-robot case.

Proposition 2 The overseer always leaves (C,p) in
an admissible state for CCRrar.

Since the immediate behavior of CCgy; depends
only on the structure of the robot’s current cell, this
proposition can be proven by showing first that the
overseer produces a valid GRD (independent of the
FSM of Proposition 1), and second that any alteration
to the robot’s current cell leaves the cell in a state
contained in the FSM described by CCgras.

The first statement is true if the cells added to (and
changed in) C are supersets of SID cells and their
boundary is correctly assigned. The area is correct if
the edges of the new cell as well as any new or altered
edges of incomplete cells are coincident with edges of
the SID. This is shown by assuming that C' is already a
GRD. When an incoming cell is intersected with com-
plete cells, the resulting intersection has edges only
where the SID has edges. Also, the way the inter-
section is calculated by the overseer ensures that only
rectangular cells result. For incomplete cells, when al-
tered, their new known edges will always abut the new
component (as in Fig. 6d) and so will also be correct.
The proof of boundary assignment is based an enumer-
ation of the types of intervals in the new cell(s). For
intervals that point to walls, complete cells, or unex-
plored area, this assignment is simple. The remainder
of the cases are defined by their adjacency (partial or
complete) to complete and incomplete cells, with the
enumeration limited by showing that no interval in a
new cell is adjacent to more than two cells. Each case
is then shown to be handled correctly by the overseer.

The second statement is shown by considering all
possible robot locations at the time of cell addition.
For example, if the robot is in a complete cell in C, it
will stay in that cell, as the cell will remain unchanged.
However, if the current (incomplete) cell is completely
replaced by the new cell and the robot is just outside
the new cell, it must be directed back into the new cell
to continue under CCgps. A complete enumeration of
the various cases can be developed by describing the
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Figure 7: Screenshots of a two-robot coverage run in
progress: (a) Beginning of run (b) Just after colleague
relationship is formed (c) Each robot exploring a dif-
ferent region (d) Coverage is complete.

types of overlap between the current cell and incoming
cell, and for each, whether p is in the incoming cell.
Each case is then shown to be handled correctly.

Proposition 3 Propositions 1 and 2 are sufficient to
prove completeness of DCR.

In the context of the FSM of Proposition 1, coop-
eration that alters the robot’s current cell effects a
transition to a new state. Proposition 2 assures that
this transition will lead to a state also in the FSM,
so that coverage can continue regardless of the exact
nature of the cooperation.

4 Conclusion

An algorithm DCpg has been presented with which
a team of independent robots of a specific type can co-
operatively cover their shared environment. The out-
line of a completeness proof of DCg has also been
presented. DCRg has also been implemented in sim-
ulation, and a series of screen shots of a single run
are shown in Fig. 7. In this two-robot example, note
that in Fig. 7b, once a colleague relationship has been
formed, robot 0 is no longer performing seed-sowing
over the full width of the environment. Finally, when

coverage is complete in Fig. 7d, note that only about
half of the area has been visited by both robots. While
clearly not optimal with respect to time or total dis-
tance for the pair, it does show that each robot spends
less time covering than it would without cooperation.

While CCgr has been successfully implemented on
a single minifactory courier, some extensions to DCg
are still needed for use on a real-world robot system.
Most importantly, although the simulation can effect
collisions between robots, DCpr currently uses only
very simple methods to cause the robots to avoid each
other and make progress. These methods sometimes
fail, and more intelligent methods are required. This
is especially important in minifactory, where couriers’
tethers introduce additional types of collision. With
this in place, however, implementation on the couriers
should be straightforward, as the interaction of DCg
with the physical robot is identical to that of CCg.
This application will help to verify the utility of DCg
as well as provide direction for further extensions.
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