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Abstract— Outside of the laboratory, accurate models of
ground impact dynamics are either difficult or impossible to
obtain. Instead, a rigid ground model is often used in gait and
controller design, which simplifies the system model and allows
attention to remain focused on other aspects of running. In
real-world terrain this simplification may overlook important
dynamic effects. Immediately following a foot touchdown event,
sensitivity to ground stiffness is at its highest and at the same
time the accuracies of state estimates are at their lowest. Even
if ground stiffness is known and state estimates are accurate,
actuator bandwidth limitations make immediate compensation
difficult. Taking inspiration from nature, we propose a novel
solution to attenuate the effects of unexpected ground stiffness
changes using a unified control system comprised of hardware
passive dynamics and open-loop software control policies.

I. I NTRODUCTION

As humans walk or run across tile, concrete, grass, sand
and any number of other surfaces, we unconsciously ad-
just leg stiffness to compensate for significant variations
in ground stiffness. A person running in the dark lacks
visual reference to ground changes, yet can often run without
falling. In general, animals (including bipeds) are excep-
tionally good at running robustly over rough terrain, rarely
stumbling even at high speeds. Intuitively we recognize that
animals cannot be controlling the precise toe position or the
toe forces at ground impact. For animals to exhibit such
stability, passive dynamic effects that help attenuate ground
uncertainty are likely to exist, in addition to the obvious
stabilizing effect of neuromuscular control. Indeed, in tests
where human subjects hop on surfaces that change stiffness
unexpectedly, a compensating leg stiffness adjustment is
measured that occurs more quickly than would be possible
with conscious or reflexive neural responses [1], further sup-
porting the existence of passively stabilizing effects resulting
from the human morphology.

Taking inspiration from nature, we propose a method for
attenuating ground uncertainties in robotic running that is
loosely based on pre-activation of muscles and the energy-
storing properties of tendons. Arguing that the developed
policy corresponds with the strategy actually employed by
animals is beyond the scope of this paper. However, we
demonstrate through simulation that a physical leg spring,
combined with an open-loop time-based spring set point
trajectory that is triggered at ground impact, results in
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Fig. 1. Left: The spring-mass model, constrained to hop vertically. The
mass and leg spring stiffness are constants, but the positionof the spring
set point, labeledv in the figure, can be controlled. The length of the leg
spring is represented asX. The overall leg length is represented as(X +
v = `). The ground surface is compliant, and deflects under the force
applied by the leg spring by an amount∆g . The position of the center of
mass relative to the undeflected ground surface is labeledy. Right: The
basic Spring Loaded Inverted Pendulum model, modified with a knee and
rotational spring, constrained to hop vertically.

robustness against ground stiffness uncertaintyin the first
portions of stance, during which software control is relatively
ineffective. After the transient dynamics of impact have
passed, and for the rest of the duration of stance, a software
controller can influence the behavior of the system.

The rationale for seeking a passively stabilizing effect
may not be obvious. In robots with sufficient actuation, a
computer control system can control most of the high-level
behavior of a robot. However, in these same robots, passive
stabilization becomes important when the time scale of a
perturbation is sufficiently fast that the software controlsys-
tem cannot influence the robot dynamics quickly enough. In
animals, neural delay may be the limiting factor which deter-
mines which aspects of control are better handled passively,
rather than through active control. In robots, computational
delay (perhaps due to sensor filtering) or actuator limitations
(perhaps due to the band-limiting effects of rotor inertia on
torque delivery) are more likely to limit the effectiveness
of software control. For example, during toe impact, the
software has little effect on the instantaneous response of
the system. The instantaneous response will be a function of
the leg stiffness, toe mass, and other physical properties.

Theories regarding passive stability effects are, by neces-
sity, based on simplified models. A one-dimensional spring-



mass model, shown in Figure 1, is the simplest model that
can be used to illustrate the ideas of this paper. The 1DOF
model is a reduction of the 2DOF model more commonly
used for animal gait analysis [2]. These spring-mass models
are derived from biomechanical evidence that animals utilize
physical springs to store and release potential and kinetic
energy from the flight phase of a running gait [3]. The
repetitive motion of the center of mass forms a limit cycle,
with stability of the running gait corresponding to stability
of the limit cycle. By developing a clear understanding of
the interactions between hardware mechanism design and
software control system design and the limitations of each,
we believe that many disturbances, including ground stiffness
disturbances, can negotiated without the use of excessive
control effort.

II. BACKGROUND

Substantial prior research inspires and supports our model,
our simplifying assumptions, and our hypothesis. Our spring-
mass model is based on an approximation used to describe
the center of mass motion of a running animal [4]. This
behavior is partly implemented through the use of natural
dynamics of animal physiology; certain muscles and tendons
in animals function as large springs acting in series with
actuators [5], [6], [7]. Although tendons store the majority
of the spring energy, muscle trajectories also influence a
leg’s spring-like behavior, and animals adjust their muscle
trajectories to exhibit different spring-like behaviors [8]. Leg
stiffness can change quickly—experiments have shown that
humans adjust their leg stiffness to accommodate an unex-
pected change in ground stiffness within a single stride [9].
Similar experiments demonstrated that humans can change
their leg stiffness faster than any possible neural response [1].
This may be explained in part by the experimental observa-
tion that some muscle behavior is determined by pre-planned
trajectories and not by reflex or other sensory feedback [10],
[11]. In addition to muscle behavior, leg geometry con-
tributes to the overall spring-like behavior in humans [12].
Test subjects that hop on a springy surface increase leg
stiffness by landing with straighter knees, and/or by utilizing
muscle activation to increase joint stiffness.

Thus far, references have suggested that animals utilize
pre-planned, open-loop muscle trajectories for some aspects
of running or hopping gaits. It may seem that open-loop
behavior is less than ideal, but in a simulation study by
Kubow et al., a simplified planar model of cockroaches with
open-loop muscle trajectories showed stable behavior [13].
This is a good example of open-loop cyclic stability effects,
although it may be advantageous to include feedback control
when possible. This paper in particular is in agreement with
our philosophical approach, especially the introductory quote
from Raibert and Hodgins [14]:

“Many researchers in neural control think of the
nervous system as a source of commands that are
issued to the body as direct orders. We believe
that the mechanical system has a mind of its
own, governed by the physical structure and laws

of physics. Rather than issuing commands, the
nervous system can only make suggestions which
are reconciled with the physics of the system and
task at hand.”

III. H YPOTHESIS

As discussed in the Background section, humans can
adjust leg stiffness faster than any neural responses. Our most
plausible hypothesis to explain this phenomenon suggests
that muscles (analogous to the spring set point) begin move-
ment with a pre-planned time-based trajectory, triggered by
the anticipated ground contact, and calculated for a specific
ground stiffness. The time-based muscle trajectory acts in
series with the springy tendons of the leg to create an overall
spring-like leg behavior. However, because the muscle tra-
jectory is based only on time rather than on applied external
forces like the springy tendon, the leg system changes its
behavior based on the rate of applied ground force at the
toe. This change in behavior causes the leg to effectively
“stiffen” after landing on soft surfaces, and causes the legto
effectively “soften” after landing on hard surfaces. In other
words, the actuation trajectory along with the series spring
may create a mechanical feedback mechanism that has a
stabilizing effect on the limit cycle of running. The effects are
only important during the first instants of stance, since after
some time, the software can effectively control the muscle
trajectory using sensory feedback.

A similar stabilizing effect is reproduced in the 1DOF
hoppers of Fig. 1, when an open-loop motor trajectory is used
in series with a physical leg spring to simulate the action of
a spring that isstiffer than the one physically present. Stated
differently, the presence of a soft spring in conjunction with a
set point trajectory that is compressing the spring on impact
will attenuate the destabilizing effects of ground stiffness
uncertainty.

IV. H ARDWARE AND CONTROL DESIGN POLICY

In this section we explain the basic spring-mass models
of Figure 1 and some necessary simplifying assumptions.
Next, we derive the dynamics of two hoppers, one with
a linear prismatic leg spring and the other with a linear
rotational spring at the knee. From these equations, open-
loop controllers are derived that modify spring set points in
order to change the effective spring stiffness. We explain
in words the short-term stabilizing effects of these open
loop controllers, and lastly, discuss the stabilizing effects of
having a knee versus having a prismatic leg spring.

A. Model and Assumptions

The leg is a series chain of the following parts: a mass
(representing the body of a animal), a spring set point adjust-
ment (representing the net effect of leg muscle activation), a
spring (representing the net compliance of leg muscles and
tendons), and a linearly compliant1 ground surface. The leg

1Representing the ground as a massless linear spring is a major simpli-
fication of natural ground properties. This linear model is adequate for the
purposes of this initial study and could be considered a limiting case.



may or may not have a knee, see Figure 1. In either case,
the mass is constrained to travel only on the vertical axis.
All components of the model are massless except for the
body, and as such, the entire model has only a single degree
of freedom, which is the height of the center of mass. This
degree of freedom is controlled by moving the spring set
point, so that the behavior of the leg is governed by more
than merely the properties of the passive spring.

B. System Dynamics with or without a Knee

With or without a knee, the vertical acceleration of the
center of mass of the robot,̈y, can be found by summing the
forces at this point, resulting in

ÿ = −g +
Fy

m
, (1)

whereg is the magnitude of the acceleration of gravity and
Fy is the magnitude of the force exerted in the vertical
direction by the prismatic or rotational spring.

For the hopper with a prismatic leg spring,

Fy = Kpr(`0 − `), (2)

whereKpr > 0 is a spring constant,̀0 is the rest length of
the leg (the distance from toe to body when no toe force
is applied), and` is the instantaneous length of the leg.
Assuming the surface of the ground is purely elastic and
also massless, the restoring forces of the ground must match
the forces exerted by the prismatic leg spring, so that

Kpr(`0 − `) = Kg∆g, (3)

whereKg > 0 is the ground stiffness constant and∆g is the
ground deflection measured vertically at the point of contact
with the toe. From the geometry of Fig. 1,

` = y + ∆g. (4)

Using (2) (3) and (4), the forceFy is found in terms ofy
and `0,

Fy =
KgKpr

Kg + Kpr

(`0 − y). (5)

Equation (1) can now be rewritten as

ÿ = −g +
1

m

(

KgKpr

Kg + Kpr

)

(`0 − y), (6)

which gives the acceleration of the center of massÿ as a
function of the height of the center of massy and the position
of the prismatic spring set point`0. For a fixed̀ 0 and known
initial condition(t0, y0, ẏ0), the above can be solved fory(t)
giving

y(t) =
ẏ0
√

α1

sin(
√

α1 (t − t0))+

(

y0 −
α2

α1

)

cos(
√

α1 (t − t0)) +
α2

α1

(7)

whereα1 = 1
m

(

KgKpr

Kg+Kpr

)

andα2 = −g + α1`0.

The dynamics of a robot with a rotational knee spring can
be similarly derived, but with equations (2) and (3) replaced
by

Fy = Krot(θ0 − θ) d cos(θ/2) (8)

and
` = 2d sin(θ/2) = y + ∆g

`0 = 2d sin(θ0/2),
(9)

which are each based on the geometry of a hopper with a
knee spring of stiffnessKrot > 0. In the general caseθ
cannot be explicitly found in terms ofy, Fy, and θ0 and
thus a simple closed form solution of the dynamics is not
readily available. Instead numerical integration is used to find
trajectories of the hopper with a knee.
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Fig. 2. Vertical toe force,Fy , as a function of leg deflection,(`0−`), for a
linear rotational knee spring. Although the function appears quite linear for a
particular spring set point,̀0, the stiffness does change for different values
of `0. For the purposes of our simplified simulation, this is the primary
difference between a rotational knee spring and a prismatic leg spring.

C. An Open Loop Control Policy

In the absence of disturbances and modeling error, it is
possible to derive an open loop trajectory for the spring set
point that will result in an effective change in spring stiffness.

In the case of the hopper with a prismatic leg spring, define
the global stiffness as the net stiffness of the leg in series
with the ground, which is equal to

Kglobal =
KgKpr

Kg + Kpr

. (10)

Define a desired global stiffness as

Kglobal,des =
KgKpr,des

Kg + Kpr,des

. (11)

for a desired stiffness of the leg spring,Kpr,des > 0.
The control policy is applied to the spring set point,`0.

It is an open loop, time based trajectory triggered by toe
contact with the ground, which indicates the beginning of
the stance phase. The purpose of the controller is to change
the effective leg stiffness, causing the nominal system

ÿ = −g +
Kglobal

m
(`0 − y) (12)

with a moveable spring setpoint`0 to behave like the desired
system

ÿ = −g +
Kglobal,des

m
(`∗0 − y) (13)



with a fixed spring setpoint̀∗0. To achieve matching, set

Kglobal,des(`
∗

0 − y) = Kglobal(`0 − y), (14)

and solve for the spring set point`0 as a function of time.
Because the control law is designed to be open loop (not
require measurements of any state), sety = y∗(t), where
y∗(t) is the solution (7) withα1 = Kglobal,des/m and
α2 = −g + α1`

∗

0. The resulting open loop controller is

`0(t) =

(

1 −

Kglobal,des

Kglobal

)

y∗(t)+

(

Kglobal,des

Kglobal

)

`∗0. (15)

Derived by a similar procedure for the hopper with a knee,
the open loop set point control policy that results in a change
in effective spring stiffness is

θ0(t) = θ∗(t) −

(

F ∗

y
(t)

Krot d cos(θ∗(t)/2)

)

, (16)

where F ∗

y
(t) and θ∗(t) are the force and angle profiles

obtained by numerical integration from the system

ÿ = −g +
Krot,des(θ

∗

0 − θ) d cos(θ/2)

m
, (17)

initialized at the touchdown timet0.

D. Remarks

We now have notation for the variables of our spring-mass
model defined in Section IV-B, so our hypothesis can be
stated in greater detail. We hypothesize that a muscle (spring
set point) trajectory,̀0(t), is initiated upon toe contact with
the ground. This muscle trajectory is pre-computed, based on
the expected properties of the ground (simplified to a ground
stiffnessKg in our derivations), and it is initiated at ground
contact either by anticipation of contact or by a physical
trigger. The leg spring stiffnessKpr is softer than the desired
leg stiffnessKpr,des, but the set-point trajectorỳ0(t) causes
the spring to exert forces as if it were the correctly tuned
spring. In other words, as the spring compresses due to
ground forces, the spring set point is advancing, forcing the
spring to compress further.

If the ground is exactly the stiffness that is expected, then
the combined behaviors of the leg spring and the spring
set-point trajectorỳ 0(t) result in the correct desired leg
stiffness behaviorKpr,des. If the ground stiffness is greater
than expected, the leg spring will deflect at a faster rate than
anticipated. The spring set point trajectory`0(t) is time-
based and thus completely unaffected by ground stiffness
changes, so it does not deflect faster along with the spring.
Thus, for a particular leg length, the set point deflection isa
smaller portion of the overall leg deflection, while the spring
is a greater portion. The force being applied by the leg at
its current position is lower than it would be if the leg had
taken longer to reach its current position and allowed the set
point trajectory to compress the spring further. In effect,the
stiffness of the leg has been reduced.

The effect is similar for a disturbance in the opposite
direction, landing on ground that is softer than expected.
The leg will deflect at a lower rate than normal, while the

pre-planned trajectorỳ0(t) moves forward as planned. At a
particular leg deflection, the leg will be applying more force
than it would in the normal situation, and the stiffness of the
leg has effectively been increased.

E. Adding a Knee

While this stabilizing effect works for a prismatic spring
in series with a set point, the effect is amplified by adding
a knee. This change of kinematics adds some complexity to
our model; rather than a basic vertical pogo stick, the system
is now a mass on top of a single degree of freedom leg
that uses a knee rather than a prismatic joint. The hopper is
still constrained to vertical hopping, the leg is still massless.
The spring is now a rotational spring at the knee rather
than a prismatic spring along the length of the leg. The
rotational spring is in series with a rotational motor, suchthat
deflection of the leg can be caused by deflection of the knee
spring, motion of the motor, or both. In this single degree of
freedom system, a knee is essentially a linkage that translates
the rotational knee motion to a vertical toe motion, with a
nonlinear softening mechanical advantage governed by the
sine of the knee angle.

By adding a knee, the spring behavior is determined not
only by the position of the set point and the deflection of
the spring at a particular time, but also by the orientation of
the knee relative to the deflection of the spring. Consider the
scenario in which the leg is mostly folded, and the spring is
undeflected; in other words, the motor has rotated the knee
to a mostly folded position, with no external load. In this
scenario, the effective vertical leg spring will be much softer
than with a straighter knee. Conversely, a nearly straight leg
will produce a high effective vertical stiffness.

When the robot or animal is hopping and the foot hits
softer ground, the leg will compress more slowly than ex-
pected, and the pre-planned trajectory will begin compressing
the knee spring on schedule. However, because the leg will
be straighter than expected, the vertical force on the ground
will be higher for a given spring deflection. Thus, the knee
joint is accentuating the already existing stability effect, and
the leg spring is essentially behaving like a stiffer spring,
partially compensating for the softness of the ground.

V. SIMULATION

Based on the equations of Section IV-B, a simulator was
programmed using Matlab’s ODE45 command and used to
test the behavior of the system. Parameters for simulation,
including initial conditions, are shown in Table I. In each
case, simulations were initialized with the robot in flight.

Figure 3 plots effective leg stiffness as the robot encounters
three different ground types. In each case, the desired leg
stiffnessKpr,des is 20kN/m and the actual leg stiffnessKpr

is 10kN/m. The expected ground stiffnessKg is 50kN/m.
Spring set points are modulated using the open-loop policy
of (15).

Effective leg stiffness is defined as the total force applied



TABLE I

PARAMETERS OF THE SPRING MASS MODEL.

Parameter Units Value

Rest length of prismatic leg:̀0 m 0.75

Length of thigh and shin links:d m 0.5

Body mass:m kg 40

Expected ground stiffness:Kg kN/m 50

Actual ground stiffness:Kg,act kN/m varies

Desired spring stiffnesses: kN/m, kN/rad 20, 40
Kpr,des, Krot,des

Actual spring stiffnesses: kN/m, kN/rad varies, varies
Kpr, Krot

Acceleration due to gravity:g m/s2 9.81

to the ground by the spring, divided by the net leg deflection:

Kpr,eff(t) =
Fy(t)

`∗0 − `(t)
. (18)

As seen in Figure 3, the effective leg stiffness is higher in
response to lower ground stiffness and lower in response to
higher ground stiffness. In the absence of disturbances, that
is, when the ground stiffness is as expected, the effective
leg stiffness is equal to the desired leg stiffness. Thus, the
open-loop spring set point trajectory causes the leg stiffness
to compensate for changes in ground stiffness, even when
neither is explicitly measured.

Figure 4 explains the open-loop stiffness adjustment seen
in Figure 3. When ground stiffness is as expected, the spring
compresses and relaxes in a trajectory that complements the
spring set point trajectorỳ0(t), and results in a spring-like
behavior identical to the desired leg springKpr,des. When
ground is softer than expected, the leg spring takes longer
to deflect, while the set point trajectory is independent of
ground stiffness. In comparison to landing on ground of the
expected stiffness, identical leg deflections include higher
spring deflections, resulting in higher forces, meaning that
effective leg stiffness is higher.

Figure 5 shows how changes in effective stiffness provide
open-loop stabilizing effects in the first portions of the stance
phase, with benefits quantified in Figure 6.

VI. CONCLUSIONS ANDDISCUSSION

Throughout the paper, we have talked about ground stiff-
ness as an ideal linear spring. A linear stiffness is a poor
approximation of dynamic ground properties, as is a linear
viscous damping. However, it should not affect the stabilizing
effects described in this paper. If the ground gives way
more quickly than expected at the beginning of stance, the
leg stiffens; if the ground does not give way as fast as
expected, then the leg softens. Even for complex dynamic
ground behavior, the leg stiffness adjustment will attenuate
the effects of a change in ground properties on the center of
mass motion of a running robot.
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Fig. 3. The effective leg stiffness,Kpr,eff , as a function of time for three
different ground stiffnesses. Each line results from the same pre-planned set
point trajectorỳ 0(t) and the same physical leg stiffnessKpr = 10kN/m,
but a different ground stiffnessKg,act. When the expected ground stiffness
of Kg = 50kN/m is encountered (the case of no disturbance), the effective
leg stiffness is equal to the desired leg stiffness,Kpr,des = 20kN/m, as
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Fig. 4. These figures are snapshots of the spring-mass system hopping on
three different ground stiffnesses, shown at the same leg deflection, which
occurs at different times. The leg spring has deflected a different amount
in each figure, and thus is applying a different force on the ground in
each figure. A different force at a particular deflection corresponds with a
different leg stiffness.

For variations in ground height rather than variations in
ground properties, the result is somewhat different than the
stabilizing effect described in this paper. An increase in
ground surface height causes an early toe contact, and the
soft leg spring begins deflecting before the pre-planned set
point moves; thus, the overall leg stiffness is reduced, and
the mechanical advantage of the knee accentuates the effect.
Conversely, a decrease in ground surface causes late toe
contact, such that the pre-planned trajectory extends the leg
under no spring load, straightening the knee, before the toe
contacts the ground. Thus, the overall leg stiffness increases.
We have not simulated or explored the effects on the center
of mass trajectory due to the changing leg stiffness on ground
height variations, though it will be interesting for future
work.

This research is fundamentally different from central pat-
tern generators (CPGs) or open-loop trajectories for general
control, like the stable planar cockroach simulation described
in the background section. We are considering the time-based
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Fig. 5. Top: The position of the center of mass of our spring-mass
model as a function of time.Bottom: detail of Top. Values above 0.75m
correspond to the flight phase, values below 0.75m correspond to the
stance phase. At approximately 0.5s, the ground stiffness changes from
the expected50kN/m to an unanticipated30kN/m. The solid bold line
is a reference trajectory, showing the center of mass trajectory in the
absence of any disturbance. Each of the other lines shows thecenter of
mass trajectory for different physical leg stiffnesses encountering the ground
stiffness disturbance. The softer the leg spring, the lesser the disturbance.

open-loop operation only during the initial instants of stance,
because these first instants are when sensor delay, inertias,
and computational delay prevent the software from exerting
control over the mechanical system. At first impact, with
mechanical stabilizing effects, the system begins corrective
action instantaneously. After some amount of time, the com-
puter can accurately sense the new disturbances, calculate
corrective actions, and command the motor; the motor can
then begin accelerating its rotor mass and move to a position
or velocity to implement more complex corrective actions
than are possible through natural dynamics.

We have shown an open-loop stabilizing effect for running
that is implemented through a combination of time-based
trajectory and passive spring, and is accentuated by using a
knee rather than a prismatic leg. The idea for these effects
is inspired by results from the field of biomechanics, but
validated in a mathematical simulation. Our opinion is that
this effect will be useful for running robots, but it depends
highly on the actuator limitations and the type of terrain. The
importance of these open-loop stabilizing effects for running
robots will be determined when they are examined in the
context of a specific robot.
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