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Abstract

Planar linear motors (Sawyer motors) have been
used n industry as open-loop stepping motors, but
their robustness and versatility has been limited. Us-
ing a sensor recently integrated into such a motor, a
closed-loop 3-DOF controller has been implemented.
The software-based control system consists of a com-
mutator for computing amplifier currents from actua-
tor forces, a force resolution function for solving the re-
dundant actuation and saturation problems, and an ob-
server for producing a velocity estimate, together with
a PID controller. Ezxperiments are performed using a
2-azis laser interferometer to show that the controller
has sub-micron resolution, 2 pm peak-to-peak repeata-
bility, and settling times after trajectories of about 20
ms. Limitations of the PID controller are discussed
and ideas for improvements are presented.

1 Introduction

Commercial planar linear motors are available that
have micron-level precision over meter-sized planar
workspaces. They can move with velocities of sev-
eral meters per second and accelerations of several g’s.
However, due to the lack of a suitable position sensor,
they have been operated as open-loop stepping mo-
tors. It was recognized early that performance could
be enhanced through sensing [1], but early attempts
to develop sensors were not very successful.

Recently, prototype sensors have been designed and
developed. In [2] a 1-DOF magnetic platen sensor was
mounted on an outrigger off a commercial planar mo-
tor, and a PID controller was implemented, although
few results are presented. In [3] a 1-DOF sensor of a
different design was similarly mounted, and prelimi-
nary results for PD control suggested improved reso-
lution, stiffness, and settling times.

Our group has recently completed development of
a compact 3-DOF magnetic platen sensor. It has been
integrated into the center of a commercial planar lin-
ear motor, in space that was otherwise wasted, and
has a linear resolution (1) of 0.2 um and an angu-
lar resolution of 0.0014°. With sensing (described in
a companion paper [4]) and closed-loop control (the
subject of this paper), planar linear motors have the
potential for much wider application. Guarded moves,
fault detection, automatic registration, compliant mo-
tions, and cooperative manipulation are some of the
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Figure 1: Schematic view of the underside of the forcer.
Four linear motors combine to provide a 3-DOF force
capability. An integral platen sensor provides 3-DOF
sensing for closed-loop control.

abilities possible with closed-loop control. In [5], an
adaptive controller for a 3-DOF planar motor is pre-
sented with simulation results, although sensor noise
and actuator saturation appear to be neglected.

In more detail, planar linear motors consist of a
moving forcer that translates in two directions on a
passive steel platen stator surface etched with a waffle-
iron type pattern. The forcers are supported by a
12-15 pm thick air bearing pre-loaded by permanent
magnets, and require a tether to supply air and power.
These forcers and platens are available commercially.

The particular forcer examined in this paper is
shown schematically in Fig. 1. Two pairs of motors!
mounted orthogonally generate balanced forces about
the center of mass. Each of the four motors consists of
a stack of laminations and two coils, shown schemati-
cally in Fig. 2. The motors operate on a flux-steering
principle, with the coil currents acting to switch the
permanent magnetic flux from one set of poles to the
other. The poles with the most flux tend to align
themselves with the platen teeth, so that by activat-
ing the poles in the proper order, a stepping motion is
achieved. The coil currents can also be microstepped
by applying a sine wave to one coil and a cosine wave to
the other. A more detailed presentation of open-loop
operation can be found in [6].

Here, motor refers to one of the four actuators on the forcer,
and planar linear motor refers to the entire device.
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Figure 2: Basic linear motor operation: Currents in
the motor coils generate magnetic flux (dark flux path)
that sums with the permanent magnet flux (light flux
path) to produce forces.

The next section describes the software components
of the control system. Section 3 presents the hardware
system and the experimental results. The paper con-
cludes with a summary of the results and a discussion
of the limitations of the implemented controller.

2 Controller Formulation

A block diagram of the system is shown in Fig.
3. There are four software blocks required. The es-
timator is used to compute a velocity and position es-
timate based on the sensor position output and the
motor dynamics. The controller computes a wrench
(w = [fe fy 717) command to be generated by the
forcer, based on the estimator outputs and desired tra-
jectory. The force resolution block is needed to handle
the redundancy of the force generation, as four actu-
ators are used to generate a 3 x 1 wrench. Finally,
the commutator computes currents to send to the mo-
tor coils based on the forcer position and the desired
forces.

It will simplify things to specify wrenches and po-
sitions at the center of mass or center of actuation for
different blocks. The wrench at the center of actua-
tion, wcq, and the wrench at the center of mass, w¢,,,
are related by:

1 0 0
Weq = 0 1 0 | wem, (1)
—Py Pe 1

where p = [pzpy]” is the location of the center of mass
of the forcer expressed in the coordinate system shown
in Fig. 1. Similarly, the positions and velocities are

related by:

= 01 —Pa Yy - Dy ) and
[ 0 0 1 0 0

ca cm
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x 1 0 py x
Y = 0 1 —pg y ) (3)
¢ 0 0 1 0

ca cm

where the small rotation range of the motor justifies
linearization of the equations about the zero angle.
In this remainder of this section, each software block
is examined, with relevant motor modeling introduced
as needed.
2.1 Commutation
Derivation of the commutation functions involves
first finding a suitable model of the force generated by
a single motor segment, given the amplifier inputs. An
inversion of this model is then used for commutation.
As described more fully in [7], each linear motor
segment generates forces according to the equation:

fxl

f(i:cla L1, 1/)501)
2w

ka(ie1, 1, %z1)sin <?1‘1 - 1/)x1) , (4)

where z1 is the motor position in its direction of force
generation, p is the pitch of the motor, and ;1 is the
motor phase commanded by the amplifier. &, is a pro-
portionality factor which depends largely on amplifier
current, but also on the motor position and skew angle.
In this work, all experiments are performed with small
(< 1°) rotations and are not overly sensitive to force
ripple. Thus, it is sufficient to ignore the dependence
on position and angle. Then, k, is a linear function of
only the amplifier current é;1, and (4) becomes:

f:cl = klxl sin (2?71-'731 - 1/}1'1) . (5)

The commutator needs to find an ¢;; and ¥, that
generate a commanded force fy1 by inverting (5).
There are an infinite number of solutions, but as in-
troduced in [7], two interesting possibilities are a fized
amplitude solution, where i, is set to a constant value
and ;1 is varied according to fy1, and a fized phase
solution, where .1 is chosen constant relative to the
motor position and ;1 is varied. In this work, the fized
phase approach is used, allowing the amplifier currents
to be zero when f; is zero, which reduces thermal ef-
fects. With this approach, the commutator chooses
amplifier inputs according to the equations:

— %, and (6)
2 T
warl = — I — 5 (7)

The position z; is computed based on the sensed
forcer position. At high speeds, it is also important
to add phase advance to compensate for the latency
between the sensor reading and the control output [7].
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Figure 3: Controller block diagram

This term requires a velocity estimate. The position
of each linear motor can then be computed:

X1 1 0 _da i

zy 10 a -

vi 0 1 _da Yea +1a Z )
Y2 0 1 da ca

(8)
where t, is the phase advance time, [z § 0]7 is the
estimated forcer velocity, and y is the sensed forcer
position, both expressed at the center of actuation.
2.2 Force resolution

The force resolution function must consider the
force kinematics and force saturation properties of the
forcer. The force kinematics are given by:

7d 1 1 0 0 ;’”
wlh=|fl] =10 0 1 1 f“ ,(9)
7 ~dy dy —d, dg vt
ca fyZ
where w?, is a wrench applied at the center of the

forcer, and d, is the distance from the center of the
motor to the center of the forcer, as shown in Fig. 1.

The force saturation properties of the motor sec-
tions are determined by their maximum rated current:
fmaz = kimae. If each of the four motor sections can
generate up to a maximum force f,4., the wrench sat-
uration constraints for the forcer are:

IF8 < 2fmax, (10)
|fgjl| < Qfma:c;and (11)
7+ da (IF21+1£2) < Afmarda. (12)

The force resolution problem is to find a suitable
solution to (9) subject to these constraints.

It is helpful to consider this problem geometrically.
By eliminating the absolute values, these equations
can be expanded into 12 inequalities linear in the
wrench parameters f;, fy, and 7. These constraints
combine to form a wrench envelope £ that can be rep-
resented in IR® as a rhombic dodecahedron, depicted
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4: the

A wrench
force/torque limits of the forcer. The darker faces re-
sult from constraint equations (10,11), and the lighter
faces result from constraint equation (12).

Figure envelope represents

in Fig. 4. For example, at point p;, the forcer is gen-
erating the maximum possible force in both the 4z
and —y directions and cannot generate any torque.
Alternatively, at point pa, the forcer is using its full
capabilities to generate torque, and cannot generate
any forces.

The input to the force resolution function is the
desired wrench w¢,, which may be outside, inside or
on & leading to over-, under-, and uniquely-constrained
cases.

In the under-constrained case, an infinite number
of solutions can be found that satisfy (9)-(12). Here,
we choose the solution:

1 0 —-¢ 1
f:cl 2 a+b 2d, d

1 0 a_ 1 T
f:t:Z _ 2 a+b 2d, fd (13)
[0 Il R A 3 I
fy 2 a+b 2d, rd v

1 b 1

vz 0 2 a+b 2d,

where @ = 2f ez — |f2] and b = 2fmae — |f§l| Note
that @ and b are a measure of the remaining force capa-
bility of the forcer in the z and y directions. Note that
a or b are both non-negative, and because the wrench
is inside the force envelope, at least one is non-zero.
Therefore, (13) will always be defined, and (by examin-
ing the derivative) can also be shown to be continuous.

If the desired wrench lies on envelope &, there is
a single solution. This solution is identical to the



under-constrained case except that it becomes unde-
fined when a = b = 0. In this special case the desired
wrench is at one of the corners in the f;, f, plane (e.g.
p1) in Fig. 4, so that 7 = 0, and (13) is replaced by:

fxl 1/2 0 0 fd d

fo | |12 0 0 =

i 0 12 0| % (14)
Fyo 0 1/2 0 T e

In the over-constrained case, w¢, lies outside the
wrench envelope. In this case, the forcer is saturated,
and there are no solutions to (9) that satisfy the con-
straints. However, if we redefine the problem for this
case to be mapping w? back onto the wrench en-
velope, there are once again infinite solutions. One
simple solution is to linearly scale the desired wrench
vector back to the point where it pierces the wrench
envelope. For example, w¢, in Fig. 4 is mapped to
w' . They are related by a scale factor s;:

( (15)

such that w', = w? /s;.

Although this solution has been implemented, the
experiments are designed to avoid saturation cases.
Saturation in general is a difficult non-linearity to deal
with effectively. In this case it also acts to couple the
axes, requiring a more complicated controller design.

2.3 Control

Given the commutator and force resolution func-
tions, the controller can be designed around a simple
linear model. The mechanical dynamics of the forcer
are simply those of a mass moving in the plane:

1]
Qfma:c ’ Qfma:c ’

|21+ 1] + |7/ da
4fma:c

m 0 07 [& b(#) 0 0
Wen=|0m 0 y + 0 by(y) 0 1,
0012) L 0 0 by(6)

(16)
where m is the forcer mass and I, is the rotational in-
ertia. The b, and b, functions model the eddy-current
damping, but are neglected for simplicity and because
the damping is negligible relative to the amount of
added controller damping. To express the dynamics
in this decoupled form, I, and w.,, are defined rela-
tive to the center of mass of the forcer. The gains of a
PID control law,

. . 1
u=K (e—}—Tde—i—/ie),

can then be chosen independently for each axis. Feed-
forward acceleration terms from Eq. 16 are also added
to the controller forces.

(17)
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2.4 State estimation

The estimator exploits the linear dynamic model of
the forcer to produce a filtered position and velocity
signal without excessive lag. The discrete time esti-
mator takes the form:

® 00
Xem(k+1)=]10 ® 0 | Xem(k)+
00 &
o _
0 0
L 0 0
LO0O 0 T2 0
0L O |Fem(k)+ o we,,(18)
0 = 0
0 0L mo
0 0 QTI
U
with
J1oT _[uoo
@_[01], L_[012 ,and
1 0 0 0 0 O
Yem(k) = yem(k)= | 0 0 1 0 0 0 |Zem(k).
0 0 0 0 1 0

Here, yem (k) = [z y 0] is the sensor position output
at time k, Xepm (k) = [z 2 gy 00]7 is the state estimate
at time k, and T is the sample time.

Note that the estimator is decoupled and the esti-
mator gains [; and [; can be computed based on the
desired estimator pole locations using well-known pole-
placement techniques (i.e. MATLAB’s? PLACE com-
mand).

3 Experimental results

The software blocks in Fig. 3 are implemented on a
Motorola PowerPC 133 MHz computer running the
LynxOS real-time operating system. I/O hardware
consist of a number of Industry Pack (IP) credit-card
sized modules on an ISA bus carrier. The computer
and I/O hardware fit in a standard mini-tower PC
case, and connect to the planar linear motor through
a tether. The planar linear motor consists of a Nor-
mag platen and a modified Normag 2-phase forcer with
a 1.016 mm pitch, 60 N nominal static force, 1.4 Kg
mass, and 4 A peak operating current. The test setup
includes a Zygo 2-axis laser interferometer, which can
measure the differential skew angle and one transla-
tional axis of the forcer, providing a position measure-
ment independent of the magnetic platen sensor.

The software is structured with a single high-
priority thread running at 3500 Hz that includes the
commutation, sensor I/0, force resolution, controller,

2Product of MathWorks, Inc.
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Figure 5: The controller regulates points near the sen-
sor better than points on the periphery of the forcer.

observer, and trajectory generator functions. This set
of functions takes approximately 150 ps to complete,
leaving some time for lower-priority user interface and
network communications threads to execute. The fast
update rate is necessary to provide a reasonable num-
ber of updates per pitch. With a forcer pitch of 1.016
mm, and a peak speed above 1 m/s, even with 3500
Hz updates there may may be less than four updates
per pitch. However, a more complicated controller
can still be implemented by separating the commu-
tator and controller into separate threads, with the
controller running at a slower rate than the commuta-
tor.

3.1 Resolution tests:

To characterize the position resolution under closed-
loop control, the PID controller was used to regulate
the forcer to zero position and angle. The gains of the
controller were K = 220 N/mm, Ty = 0.0053 s, and
T; = 0.028 s. The controller poles are underdamped
with natural frequency of 40 Hz. Estimator poles were
placed at 80 Hz, which was near the upper limit for
the controller rate of 3500 Hz. Above this rate, an
unacceptable level of noise from the sensor was passed
into the controller, causing the forcer to be audibly
noisy.

Readings for the z translation and 6 skew angle
from the platen sensor, estimator, and laser interfer-
ometer were recorded at 3500 Hz for 1000 samples.
The amount of motion in the # direction of a particu-
lar point on the forcer was computed using the simple
differential kinematic equation:

dxy = dx — 00y, (19)

where dz; is the z differential motion of a test point
(2¢,y) on the forcer given a differential motion at the
middle of the forcer of dz and d6. Figure 5 shows the
standard deviation of dz; as recorded by the sensor, es-
timator, and laser interferometer as y; is varied. Note
that points with |y;| = 75 mm correspond to the edge
of the forcer. Because the sensor measures angle by
differencing two parallel position measurements that
are close together (see [4]), there is a low-noise sweet
spot in the middle of the forcer, where the sensor is lo-
cated. However, Fig. 5 indicates that even at the edge
of the forcer, the controller maintains micron-level res-
olution (1), which is sufficient for many applications.
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Figure 6: Bi-directional repeatability: errors in mov-
ing to a reference position from two approach direc-
tions are shown for open-loop (circles) and PID control
(crosses) for a range of motion distances.

3.2 Repeatability

Repeatability is the ability of an actuator to return
to the same position. The difference in the forcer posi-
tions after moving to a reference location from two dif-
ferent directions was measured with the laser interfer-
ometer. This process was repeated with varying move
distances. The controller was started several minutes
before testing began, and the test was designed to be
completed in under a minute to minimize thermal ef-
fects. The crosses in Fig. 6 show this bi-directional
position repeatability for the PID controller to be un-
der 2.5 um peak-to-peak, and the skew angle repeata-
bility to be under 0.02° peak-to-peak over 36 motions.
Note that the error increases at a travel distance of
about 20mm, which is when the linear motors start
to overlap the reference position, so it appears likely
that the motors are leaving a residual magnetic field
in the platen that is slightly affecting the sensor oper-
ation. The exact mechanism for this interaction is un-
der investigation. For comparison, the bi-directional
repeatability tests are repeated under open-loop con-
trol. The error here is probably due to a combination
of tether disturbance forces and the same magnetic
hysteresis that affects the sensor.

3.3 Trajectory commands

The closed-loop controller was used to track a tra-
jectory with a bang-bang acceleration of 10 m/s?, max-
imum velocity of 0.8 m/s, and a position change of
0.1 m. Integral gains were disabled for this experiment
to prevent integral windup during the motion.3

As shown in the dark traces in Fig. 7, the PD con-
troller tracks the trajectory to within 50 ym, and set-
tles to 1 pm within 20 ms. The tracking error comes

3Gain-scheduling could be used to re-enable the integral gain
near the end of the trajectory to correct the steady-state errors.
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Figure 7: Trajectory tracking: tracking errors are
shown for PD (dark trace) and open-loop (light trace)
control given no load (upper plot) and an “unknown”
load of 240 g (middle plot). The lower plot shows the
velocity profile of the trajectories.

from motor modeling errors (i.e. eddy-current damp-
ing, errors in the mass or peak force model parameters,
or unmodeled actuator nonlinearities.). The tracking
error is also shown when a mass of 240 g is attached
to the edge of the forcer, causing errors in in the mass,
inertia, and center of mass of the model. Even in this
case, the controller settles just as well, although the
tracking error increases significantly during one part
of the trajectory.

For comparison, the tracking experiment was re-
peated under open-loop control. However, it would
be unfair to have the open-loop controller attempt to
track the same bang-bang acceleration trajectories. In-
stead, the trajectory described in [8] was implemented.
This trajectory is identical to the bang-bang accelera-
tion trajectory, except for burst (step changes applied
to the desired position) and acceleration rolloff as the
velocity increases. These changes are designed so that
the open-loop forcer dynamics will not be excited and,
in the ideal case, there will be a constant tracking er-
ror during each phase (acceleration, slew, and deceler-
ation) of the trajectory.

After a reasonable amount of tuning of the trajec-
tory, tracking errors were as shown in the light traces
of the top plot of Fig. 7. Although the tracking error
levels are reasonably good, there is a significant oscil-
lation, indicating that some dynamic parameters had
errors or there were unmodeled nonlinearities. This
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oscillation grew worse when the extra load was added,
as shown in the middle plot. Furthermore, in both
cases, the open-loop controller takes much longer to
settle at the end of the trajectory.

4 Conclusions

This work has demonstrated 3-DOF closed-loop
control of a planar linear motor using an integrated
platen position sensor. Experiments indicate sub-
micron resolution and repeatability, and improved
tracking and settling time relative to open-loop con-
trol. The force resolution problem was identified as a
consequence of the actuator redundancy and a solution
was presented.

Limitations were found with the PID controller.
Trajectories with accelerations or velocities near the
limits of the forcer could not be reliably performed due
to the non-linear and coupling effects of actuator sat-
uration. Also, at high velocities, disturbance torques
(in practice, disturbances from the tether were most
common) may momentarily saturate the torque capa-
bility of the motor. To reject this disturbance, a PD
or PID controller would need an unrealistically high
bandwidth. We are presently exploring the use of non-
linear switching controllers to address these problems.
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