Integrating Planning and Control
for Constrained Dynamical Systems

David C. Conner
CMU-RI-TR-08-01

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Robotics

el

ROBOTICS
INSTITUTE

Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

December, 2007

Thesis Committee:
Howie Choset, Chair
Alfred A. Rizzi, Chair
Jeff Schneider
Vijay Kumar, University of Pennsylvania

Copyright(©) 2007 by David C. Conner. All rights Reserved.

(© 2007 David C. Conner

Abstract

This thesis develops an approach to addressing the coupled navigatiaromtnol problem for
wheeled mobile robots. Instead of using a top-down decoupled appifeeatioes not respect low-
level constraints, or a bottom-up approach that cannot guaranteastisfof high-level goals,
our approach is middle-out. We develop local feedback control policeséspect the low-level
constraints. The approach then uses a collection of these policies with gXistinal discrete
planning methods to either produce a hybrid feedback control policy tizaagtees high-level goals
are satisfied, or in the worst case, verifies that the high-level speicifica not realizable. Our
approach enables existing formal symbolic planning methods to be appliedniy banstrained
systems.

We extend the sequential composition of local feedback control policieshembled mobile
robots in a way that enables the automated synthesis of hybrid control polidie thesis defines
four basic “composability” requirements that guide our design of local igslicWe develop two
families of generic feedback policies that induce low-level behaviors iraya thvat enables their
formal composition. The thesis also develops a novel approach foamggeaing that a given control
policy is collision free. By design, the policies respect multiple interactingtcainss including
large non-circular body shapes, nonholonomic constraints, and inpuaidbo Given a collection
of the local policies and a task specification, our approach uses exigtimgpic planning meth-
ods to automatically synthesize a switching strategy among the policies. Exethdisgitching
strategy induces continuous motion that satisfies the high-level behaspaeification. This thesis
demonstrates the approach on real mobile robots.

While wheeled mobile robot navigation is the chosen domain in this thesis, oue fwirk
will develop composable policies that extend these formal methods to othetraioed dynamical
systems.

(© 2007 David C. Conner [

Acknowledgments

| am indebted to my advisers, Howie Choset and Alfred Rizzi, for their supjpatience, and
guidance throughout the thesis process. | am grateful for their time intemgdhe rough edges,
and challenging me to think more deeply about the fundamental questiondyumglehe basic
problems. | would also like to thank my committee members, Jeff Schneider andkdijagr, for
their useful comments and discussions along the way.

My long term office mates, Sarjoun Skaff and Jonathan Hurst, havechkdeg me sane during
my stay at Carnegie Mellon. | thank you for the laughs, debates, andajgu®d humor during
my stay. You have been true friends, and | shall always value our timéege

Several of the simulations and experiments discussed in this thesis areuth@fras ongoing
collaboration with Hadas Kress-Gazit and George Pappas at UPeank Vbu for your help and
assistance with the automata synthesis. Your help, as well as your fripndsralued.

Along with Sarjoun, | would like to thank Steve Tully, Hyungpil Moon, and &on Erinc for
their invaluable assistance with the robot experiments. I'd also like to tharikNaéabe for helpful
conversations about the vision-based localization. Thanks to Maxim tlidveand David Ferguson
for sharing their D*-lite code and discussing aspects of discrete planning

| would like to thank my friends and colleagues at the Robotics Institute, idiyeiose in
the Bio-robotics Lab, Microdynamic Systems Lab, and Manipulation Lab, dixe¢uAaron, Amir,
Bertram, Clark, Devin, Elie, Prasad, Ravi, Sidd, and Uluc. Thanksroo@ragement, and many
enlightening discussions. Thanks to Ross and Matt for giving me usafiuinents on some thesis
chapters. Thanks also to Bernardine, Chris, James, and Joel ftulluelpversations.

Aaron Greenfield and David Steck, along with Sarjoun and Jonatharechelp stay somewhat
healthy and burn off some frustration in the weight room. My wife thanksfgothat.

My thanks to Suzanne, Peggy, Jean, and Stephanie for their assiatahsepport over the
years. Thanks for keeping the ship upright, and the faculty in line.

Thanks to the many professors and staff at CMU who were generabegiottime, and freely
willing to discuss ideas with no apparent payoff for them. | especially thamis@tkeson, Ed
Clarke, John Dolan, Geoff Gordon, David Handron, Ralph Hollis, Gedétantor, Matt Mason, and
Reid Simmons. | appreciate the collaborative spirit fostered at CMU in gkreerd the Robotics
Institute in particular.

Finally, but most of all, a big thank you to my Family. To my parents, | thank yaute
sacrifices that you made, and for your love and support. To my chiltitatthew and lan, you are
a constant source of inspiration and joy in my life. Never be afraid to followrydreams; | love
you so very much. To Cody, thanks for being my furry “best friend”¥8 1/2 years To my wife
Karen, | could not have done this without your support, and probablyldvnot have undertaken
this task without your encouragement. Thank you for your love, saesifiand constant support. |
love you. | think of you every time | type my password.

| am thankful for all that | have been given. X

This work was sponsored in part by the U.S. Army Research OfficeeruttdRI DAAD19-02-
01-0383. The views and conclusions contained in this document aredhtiseauthor and should
not be interpreted as representing the official policies, either expressienplied, of the Army
Research Office or the U.S. Government.

1This statement requested by lan.

(© 2007 David C. Conner iii

Contents
Listof Figures iX
1 Introduction 1
1.1 Motivation e e 1
1.2 Approach e e e 3
1.3 Thesis Contributions 6
1.4 ThesisSOVEIVIEW v o o e e e e e e e e e e e e 8
2 Related Work 9
2.1 Conventional Approaches 9
2.2 Policy Composition Approaches e 2 1
2.2.1 Basic Sequential Composition 12
2.2.2 Applications of Sequential Composition 15
2.3 Discrete PlanningMethods 7 1
3 Overview of Technical Approach 19
3.1 Basic Definitions 19
3.2 Flow-through Policies 02
3.3 Composability Requirements for Local Policies 21
3.3.1 CollisionFree. e 21
3.3.2 ConvergentinFiniteTime 22
3.3.3 Conditionally Invariant 23
3.3.4 EfficientInclusionTests 24
3.4 Extended Prepares Definition e 25
3.5 PolicySpacePlanning e 26
3.5.1 Sequence-basedPlanning. 8 2
3.5.2 Order-basedPlanning. 29
3.5.3 Automata-based Planning 33
3.6 SumMmMary e e e 35
3.7 Glossary 35
4 Application of Policy Composition to Fully Actuated Systems 37
4.1 Local Control Policy Design for Fully Actuated Systems 37
4.1.1 MectorFieldDesign. 38
4.1.2 ControlLawDesign e 41
4.2 Policy Space Planningand Control 48
421 BasiCSCenarios 48
4.2.2 Reactive Automaton BasedPlanning. 50

4.2.3 Global Policy Design: The “Dynamical P” Problem 15

Vi

4.2.4 Automated Policy Instantiation and Deployment 53
Application to Single-bodied Wheeled Mobile Robots 57
5.1 System Constraints and Modeling Framework 57

5.1.1 PoseSpaceConstraints 57

5.1.2 Nonholonomic Constraints 58

5.1.3 InputBounds 60
5.2 BasicDesign Approach 60
5.3 GenericPolicy Designs 3 6

5.3.1 ‘PF PolicyDesign 65

532 ‘SQ'PolicyDesign 66
5.4 Policy Validation 67
5.5 Policy Instantiation 69
5.6 Prepares Graph Generation00 71
5.7 Relative Completeness Quantification 4 7
5.8 Conclusion 78
Demonstrations of Coupled Planning and Control 79
6.1 Order-basedPlanning e 79

6.1.1 ‘Deminer Robot Experiments 81

6.1.2 ‘LAGR’RobotExperiments 87
6.2 Model Checking-Based Sequence Planning 95
6.3 Automata-basedPlanning 7 9

6.3.1 ‘LAGR’'RobotExperiments 97

6.3.2 Ackermann Steered Car-like Parking Simulations 4 10

6.3.3 Multi-vehicle Scenarios Lo 110
6.4 SUMMANY e e e 115
Conclusion and Future Work 117
7.1 Contributions 117
7.2 Future Work e 012

7.2.1 Extension ofthe Basic Approach.| 012

7.2.2 Extension of Policy Design Techniques 112

7.2.3 Extension to More Complex Systems 122

7.2.4 ExtensionofPlanningTools 123
Modeling Framework 125
A.1 Work space, Configuration space, and State Space 125
A2 SystemConstraints e 612
A.3 FiberBundlesand Connections 128
Ad Examples e e e e e 132

A.4.1 \Vertical Rolling Disk (Unicycle) 132

A.4.2 Differential-drive System 413

A.4.3 Ackermann Steered Car-like System 7 13

A.4.4 Diff-drive towing atrailer 140

(© 2007 David C. Conner

B Details of Control Policies For Fully Actuated Systems 143

B.1 Vector FieldDesignDetails 314
B.1.1 Mapping of Convex Polytopesteball 143
B.1.2 Harmonic FunctionsonaUnitDisk 149

B.2 Component Policy DesignDetails\ 015
B.2.1 Unconstrained Dynamics Control Policy| 015

B.3 Details of Hybrid Control Policies for Constrained Idealized Dynamigat&ns . 154
B.3.1 SaveControlPolicy 155
B.3.2 AlignControlPolicy 160
B.3.3 TrackControlPolicy 161

C Test for Collision Free Cells 165

C.1 Alternate Approaches 165

C.2 Calculationof Expanded Cell 167

C.3 Collision Testing Using Expanded Cells 74 1
C.3.1 MeshDefinition 174
C.3.2 CollisionTesting i i i i e 174
C.3.3 Patch Stitching and Mesh Refinement 176

C.4 Testing ProCess o i i i i i e e e e 78 1

D ‘PF Style Control Policies 181

D.1 Policy Structure 118

D.2 General Control Approach 182

D.3 CellDefinitions 185
D.3.1 Line-segmentBasedCell 185
D.3.2 CircularArcBasedCell 189

D.4 PolicyDesigns e 191
D.4.1 Unicycle System / Vertical Rolling Disk / Differential-drive system . . .192
D.4.2 Ackermann Steered Car-like system 3 19

D.5 Policy Validation e 194
D.5.1 CollisionFree. 194
D.5.2 Finite-time Convergence i e e e 195
D.5.3 Conditional Invariance 195
D.5.4 SimpleiInclusionTests e 196

D.6 Conclusion 197

E 'SQ’ Style Control Policies 199

E.1 CellDefinition e 199

E.2 Policy Validation 201
E.2.1 CollisionFree. e 202
E.2.2 Conditional Invariance Test 220
E.2.3 SimplelinclusionTests 203

E.3 PolicyDesign e 204

E.4 Conclusion e 205

(© 2007 David C. Conner vii

F Robots Used in Demonstrations 207

F.1 ‘Deminer Differential-drive Robot 207
F.2 ‘LAGR’Differential-drive Robot 210
F.3 Ackermann Steered Car-like Robot 214
References 216

viii

(© 2007 David C. Conner

List of Figures

11
1.2
13
1.4
15
1.6
1.7

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8
4.9
4.10
411
412
4.13

5.1
5.2

Navigation problem 2
Decoupled planningand control 3
Policydomain e 3
Funnelas anidealizedpolicy4
Desired global control policy 5
Composite global control policy 6
Policy composition 7
Total order switching strategy among deployed policies. 13
Cyclicgraphtoacyclictree 4 1
Vectorfieldflow 20
Composition of multiple policies 21
Collisiontest e 22
Conditional positive invariance e e 23
Domaininclusiontest 24
Extended prepares definition L 25
Example collection of policies and preparesgraph 27
Sequence-based planning L 28
Order-based planning e 31
Order-based planning execution u. 32
Automata-based planning L 34
Vector field for a flow-through policy 38
Mapping from polygonal celltodisk 39
Convergent potential function for polygonalcell 41
Simulation of a dynamical system 43
Vector field derivative spectral norrﬂ DqXH) for a polygonalcell 44
Save policy covered by other policies. 47
Simulation of a constrained dynamical system 48
Simulation of akinematicsystem o 49
Nursery automaton simulation 50
Configuration space cells for “dynamical P” simulation. 51
Policy-based decisionmaking oL 53
Heuristic for evaluating goal polygons 54
Automated deployment simulation L. 56
Robotpose 58

Diff-drive robot 59

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32

Cellinbody posespace 61
Constrained input set for kinematic systems 62
Definition of planargoalset, 64
Path following style policy 65
Super quadric cell definition 66
Superquadriclevelsets 67
Policy domaininfree spacetests 8 6
Constraint surface fdr (¢,v) from (5.4). 69
Cachevs. Suite of policies 71
Prepares tests for policy deployment 73
Third preparestest 73
Sampled poses for coverage fraction calculation 75
Policy reference grid spacings e 75
Coverage fraction estimates converge i e i i .. 16
Estimated coverage fraction as function of policy grld spacmg 77
‘Deminer’ laboratoryrobot 81
Deminerinputsets 81
Detail of seven cellsin environment. 82
Projection of 288 cells into the workspace. 83
Complete suite of 288 cells in three-dimensional pose space. 83
Experimental results #1-4 for ‘Deminer'robot 84
Experimental results #5-6 for ‘Deminer'robot 85
Experimental results #6-7 for ‘Deminer’'robot 86
‘LAGR’ robot navigatingacorridor. e 87
‘LAGR’ meta-policies. 88
Example meta-policy for ‘LAGR’ experiments 89
‘LAGR’ leftturn meta-policy 89
‘LAGR’ robot executing K-turn 90
‘LAGR’ robot order-based experiments composite. 91
‘LAGR’ robot experiment details. 92
‘LAGR’robotgoalclose-up e 93
‘LAGR’ robot experiments with re-planning. 93
Simulation of open loop sequence of policies 96
‘LAGR’ timid night watchman. 98
‘LAGR’ timid night watch automaton node switching. 99
‘LAGR’ timid night watch policy switching. oa
‘LAGR’ timid night watch re-planning. 100
‘LAGR’ timid night watch experiments. 021
‘LAGR’ node switching during experiment 103
‘LAGR’ policy switching during experiment 103
Local parking behavior induced by meta-policy 104
Environment for parking simulations o L. 105
Parking policy details 061
Policies deployed atintersection 106
Two executions of parking simulation 108
Four executions of parking simulation 109
Simple multi-vehicle traffic simulation oL 111

(© 2007 David C. Conner

6.33 Snapshot of complex multi-vehicle traffic simulation 112

6.34 Later snapshot of multi-vehicle simulation 113
6.35 Close up of multi-vehicle behaviors 114
A.1 Representation of planarworkspace 125
A.2 Base-fiber decomposition of configurationspace 129
A.3 Verticalrollingdisk 33
A.4 Diff-driverobot 135
A5 Car-like system with Ackermannsteering 137
A.6 Differential-drive robot with trailer 0L 141
B.1 Face intersection point for linear retraction 147
B.2 Mapping of polygon to disk with boundary conditions 149
B.3 Collision projection used by Save controlpolicy 156
B.4 Collision with the intersection of two faces using the Save policy 157
B.5 \elocity vector relationships for the Track control policy 162
C.1 Expanded obstaclesinworkspace 166
C.2 Expanded obstaclesinposespace 167
C.3 Schematic example of collisiontest 168
C4 CelltoR(Z;) Mapping« v v v v o e e e e e e e e 169
C5 Expandedcell e 701
C.6 Planar slices used to determine the expandedcell170
C.7 Approximate collisiontestfailures. 175
C.8 Stitching surface patchestogether. 176
C.9 Blendnormalvectors 771
C.10 Expanded cell for polygonalrobots 178
D.1 Reference path with defined coordinates. 182
D.2 PFcontrolsurface e 183
D.3 PFcontrolsurface 183
D.4 PFsmoothed control surface 184
D.5 PFblending function 518
D.6 PFcelllimitingsurfaces e 186
D.7 PFcelllimitingsurfaces 187
D.8 PFcell e 188
D.9 PFarccell e 918
D.10 PFarc-basedcell 190
D.11 Control input set for unicycle/diff-drive systems 192
D.12 PF cell boundary definitions 195
E.1 Schematic representations of the generic SQcell 200
E.2 ExampleSQecells 201
E.3 Constraint surface fdr (¢,v) from(E.4). 203
E.4 Corresponding boundary points for cell inclusiontests 203
E.5 Levelsetdefinitionforcontrol 205
F.1 ‘Deminer’ laboratoryrobot 207
F.2 ‘Deminer’ laboratory robot boundingellipse 208

(© 2007 David C. Conner Xi

Xii

F.3 Deminerinputsets 208
F.4 ‘LAGR’robotwith stereocameras 210

F5 ‘LAGR bodyplan e P1
F.6 ‘LAGR’velocity response - command and actual 212

F.7 'LAGR INpULSEetS e e 12
F.8 Ackermann-steered ‘mini-van’body 214

F.9 Ackermannsteeringlimits 215
F.10 Ackermann steeringratelimits 521

(© 2007 David C. Conner

Chapter 1

Introduction

One of the most basic problems in robotics is moving around an environmesntttewa designated
goal while avoiding obstacles. Determining how to avoid obstacles and tieadesignated goal is
anavigation problemmoving is acontrols problem In other words, for a real system to avoid ob-
stacles and reach its goal, it must determine the control inputs that inducetimedemotion. Thus,
at its most basic, this is eouplednavigation and control problem. Designing a single, globally-
convergent, feedback control policy that addresses this couplétepnas generally intractable due
to the complexity of non-linear system modeling and satisfying multiple interactinsfi@onts.
Conventionally, this coupled navigation and control problem is addrdssading a decoupled
approach. First the goal is defined, then tractable planning technipeei$ysa safe path through the
environment, and a control law that causes the system to follow the desitiedsplesigned. This
decoupled approach can be problematic as constraints on the inputdéeid egnamics may make
following a given path unrealizable; that is, there are no inputs that rebkzgesired velocity. This
can render the goals unreachable without replanning. This thesisadvamobot control paradigm
that integrates planning and control by considering the constraints op ffbe low-level system
behavior is guaranteed by local feedback control policies, and theléghbehavior is guaran-
teed by formally composing these simple behaviors. This method, tesetpeential compositign
is shown to be robust to disturbances and perturbations [21]. This thersiss to extend basic
sequential composition to nonholonomic systems and incorporate additionaingaechniques.

1.1 Motivation

This thesis focuses on the domain of wheeled mobile robots navigating amstaglels in a planar
workspace, as shown in Figure 1.1. We use this navigation problem to dé&menthe policy
composition approach. Although navigation and control appears to basesty addressed in
the literature [22, 70, 75, 118], further inspection reveals that thisl@nolemonstrates a variety
of nonholonomic velocity constraints, input bounds, and configuration limitstd body shape
and obstacles, that are often ignored or simplified. While each of thes¢raions is challenging
in and of themselves, the combination and interaction of the constraints makespihitcularly
difficult challenge. Where previous research has simplified this probjestifninating one or more
of these constraints, this thesis treats the constraints holistically. Thus, gededhmobile robot
navigation and control problem provides an excellent contrast betevéstimg planning and control
approaches, and the paradigm advocated here.

Existing approaches to addressing the coupled navigation and cordldépr can be broadly
classified as either “bottom-up” or “top-down” approaches [14]. Bbtom-upapproach depends

Figure 1.1: Navigation problem: control a mobile robot so that it moves thrdsgenvironment
and reaches its goal without colliding with any obstades,

on emergent behaviors that are induced by applying low-level primitigeedon reactions to sen-
sor inputs [19]. Thidehavior-basedpproach is generally easy to implement, and has been used
to demonstrate moderately complex behaviors. The low-level behavigactabe low-level con-
straints by construction. This bottom-up approach attempts to avoid highelewstraints such as
obstacles and satisfy high level goals by switching among the low-levelimeba The approach
is fundamentally not verifiable, and is not capable of guaranteeing thgtleg behaviors are cor-
rectly performed. A contrasting approach used in mobile robots is the ‘wamtapproach. Here,
a reasoning system defines and schedules intermediate goals or takksiagosystem defines
a path to goal, and a feedback control policy attempts to follow the path [22 Prévided each
subtask is satisfactorily executed, the overall behavior is realizabldafezisarlier, this decoupled
approach can be problematic because the high-level reasoning typicalhgggthe low-level sys-
tem constraints in order for the planning problem to be tractable. This malf iegoals that are
unreachable, or plans that are not robust to disturbances along yheawsider the illustrations in
Figure 1.2.

This thesis seeks to enable a “middle-out” [14] approach that combinegshefithe “bottom-
up” and “top-down” approaches. The low-level behaviors are impléatensing feedback control
policies that are designed to satisfy all of the system constraints over a linutedinl. The key
difference with respect to conventional bottom-up approaches is thaemence guarantees are
required for these behaviors. Instead of identifying sub-tasks egeals from the top down, this
middle-out approach uses the available local policies to define what skbdee realizable. These

2 (© 2007 David C. Conner

7>

(a) Curvature constraint violation (b) Significant disturbance

Figure 1.2: Decoupled planning and control can lead to difficulties fosttaimed systems. a) The
implemented control law cannot follow the planned path due to a curvatusdraon, shown by
darker line. b) Trying to reacquire a valid workspace path after a dstuwdomay lead to collision
because the control law is ignorant of obstacles. The question thes,drise much error can be
tolerated without requiring replanning?

sub-tasks are then composed to address the overall goal. This techagjoeen called “behavioral
programming” [14]. It then becomes more natural to plan symbolically ovés@ete collection
of realizable behaviors than by specifying sub-goals in the continuotlspace. One goal of this
thesis is to extend the types of planning available, while preserving the syatsiitgto react to
changing environmental conditions.

1.2 Approach

The middle-out approach requires lodaédback control policiethat map vehicle states to valid
control inputs. Thelomainof the policy is the region over which the mapping is valid. To be valid,
the feedback control policy must respect the interacting system cortstmier its domain, and

2(®)
—9(P)

Figure 1.3: The policy has a domai#(®), over which it is valid, and a designated goal €¢®).

(© 2007 David C. Conner 3

2(P)
Vy [
A
4 (2)

Figure 1.4: The funnel metaphor for a feedback policy can be viewethadealized version of

a Lyapunov function. The funnel “mouth”, represented by the largéifise at the maximum
Lyapunov value, specifies the policy domai{®); the planar ellipses represent level sets of the
Lyapunov value. The system flow induced by the closed loop dynamicsediettdback policy
moves the system to ever lower Lyapunov valdéstoward the goal set/(®), represented by the
projection of the funnel’s small end.

guarantee convergence to its goal set. Figure 1.3 shows a schemat&ergption of the domain
and goal set of a policy over a planar region. Throughout this thesisis& the “funnel” metaphor
to represent the closed-loop action of a policy over its domain [21, 86]. \fiénence to Figure 1.4,
the height,V, of the simple funnel represents the value of an idealized LyapunotidandJnder
the influence of the policy, the closed-loop system dynamics act to dedteafeight (Lyapunov
value) while bringing the system towards the goal set. Given certain giep®f the feedback
control policy, the closed loop behavior flows from the policy domain to ite@ated goal set [21].

Ideally, the coupled navigation and control problem could be addresgbd single global
feedback control policy that respects the system constraints. In thes tbesideal global control
policy would have a Lyapunov function whose level sets resemble thdSgufe 1.5. Instead of a
“thin” path defined through the workspace, the global policy has a “thitkhain that covers the
workspace. This approach is robust to disturbances, and mitigatesdatidaresome re-planning.
For unconstrained systems navigating in open spaces, the global qoolicyl design is simple.
Unfortunately, designing a single, provably correct, globally conugrgentrol policy for realistic
constrained systems navigating in cluttered environments is thus far intractable

To get around the difficulty of designing a global feedback control poiids thesis advocates
addressing the coupled navigation and control problem by decomposirgjaibal problem into a
series of intermediate tasks, or behaviors, where each intermediate talskidesby a memoryleés
state feedback control policy with a local domain. Each intermediate behakies the system
safely to its intermediate goal, and brings the system state éltstre final goal. Put simply, the
policies are sequentially composed to approximate the global policy; hencathesequential
composition The benefit is that local policies are easier to define in a way that sattsisystem
constraints.

Memoryless policies depend only on the current state, and not on psestates.
2Here we define “closer” in the sense of remaining actions, and nossauly closer in the Euclidean sense.

4 (© 2007 David C. Conner

Figure 1.5: The ideal solution is a global control policy that induces thieedelsehavior. Here, the
contours represent an iconic view of level sets for some idealized pdtemtéion.

The feedback control policies defined in this thesis are specifically dmsbign satisfy the
low-level constraints of the system over its local domain, while retainingppeence and safety
guarantees. Consider the two-dimensional iconic policies representegliie B.6. The small fun-
nels are ordered so that the goal set of one empties into the domain ofranath¢he final funnel’s
goal set corresponds to the overall goal.

By examining the relationship among domains for a collection of policies, thétirgstran-
sitions between policy domains can be represented as a graph. As thiéldogdehavior of the
policy moves the system from its domain to its associated goal set, if the gadl @at policy is
contained in the domain of another, the first policy induces a transition frorofitsih to the next.
Figure 1.7 shows a trivial example of this transition relation. Given the loeh&%ors encoded
by the local policies, planning becomes a problem of ordering the disar@pé.gThus, while the
low-level behaviors are encoded “bottom up” using policies that reshbesystem constraints, the
planning and reasoning steps can be applied “top down” on the discegil.grhe discrete transi-
tions are realizable by the system because of the guarantees provitlesllbgal feedback control
policies. Planning in this discrete space of policies is easier than plannimghm/e€ontinuous
configuration space, and much more flexible with respect to high-levesasiifications.

This approach leverages the strengths of symbolic planning methods ahéddé&econtrol ap-
proaches, while preserving the guarantees of both. The resuiyltsra control system that exhibits
both continuous dynamics and discrete events and/or logic. The key defiered by this thesis

(© 2007 David C. Conner 5

Figure 1.6: Policy composition gives a formal method of approximating theszgance of a global
policy. The two-dimensional iconic funnels represent policies that inflaaeover the robot config-
uration space. As shown in the lower left funnel, the close loop action ewdilaw from the larger
domain into the narrow portion that serves as the goal set. Note, the crddistzelp differentiate
different policy domains; they have no special meaning.

in developing these hybrid control systems is to define control policiesébpect the system con-
straints and are “composable.”

The benefit of developing suitable policies, and the real power in ségleamposition, is
the flexibility of planning in the space of control policies. Because the plgnoaturs on the
discrete graph, it becomes tractable to plan for multiple goals that depentbamation gathered
atrun time [24]. The aim is to move beyond simple navigation from point ‘A’ tmp'®’, towards a
higher level symbolic specification of tasks and goals, while retaining thestoeéss and guarantees
of feedback control. Instead of requiring each small detail to be spaoifie would like to describe
the task at a high level, and have the system autonomously execute in a rtratrsatisfies that
desired task. This thesis develops techniques that enable expresdifiexble planning with
real systems, operating under real world constraints. We seek to @dggmbolicbehavioral
programmingiechniques, and extend their application to highly constrained systems0d}, 1

1.3 Thesis Contributions

The first contribution of this thesis is to refine the idea of “composability” asldtes to the policy
design. In order to realize the benefits of sequential composition, theiteexissa collection of

6 (© 2007 David C. Conner

(@) (b)

Figure 1.7: A more complex behavior can be induced by the composition tfestimple policies:
a) policy composition, b) discrete transitions between policy domains rejteesas a graph.

local policies that respect the local constraints of the system, while geaiag performance over
the local domain. To that end, we enumerate four necessary propeatiéscid policies must satisfy
to be composable. These properties are generally applicable to any dysyasteia, and extend the
basic convergence and invariance properties defined in [21]. Thistieends the types of policies
allowed under sequential composition to include “flow-through” policies ditaxh to conventional
convergent policies, and develops minor extensions to the allowed relapamong the policies.

Second, we demonstrate a policy design approach that satisfies theargga®operties for
wheeled-mobile robots moving in cluttered environments. Two parameteriieg designs are
presented; one based on level sets and one based on path-followiaghelis defines tractable
techniques for testing that the defined policies satisfy the necessamriiesp This includes a new
technique for testing that a given continuous feedback policy is collisamdver its domain. Other
policy designs are certainly possible, and may be readily incorporated motity composition
framework provided they satisfy the four necessary properties defirtéis thesis.

Third, a strategy for partially automating the policy deployment is presentederaging in-
variance properties of the robot model, a limited number of basic maneuvgrisenastantiated at
various locations in the environment via rigid body transformation. As thisoggh only approxi-
mates the ideal global policy, the approach is not necessarily completefdiegrithe thesis defines
a sampling-based approach to assess the relative completeness of helgolidyment. That is,
determine what fraction of the free space is captured by the hybrid ¢egs@m.

Fourth, the thesis demonstrates a variety of planning approaches owhschete graph. This
thesis puts several existing approaches to discrete planning into the tcohwequential com-
position, and discusses their relative strengths and weaknessespfrioaches range from sim-
ple graph-based Dijkstra’s search, to reactive automata-basedaappsothat satisfy high level
temporal specifications [68]. Thus, we extend sequential composition te filexible planning
techniques, while enabling these advance planning techniques to be appiiede complex and

(© 2007 David C. Conner 7

realistic systems. While the discrete planning approaches are not contrifyutienthesis allows
these discrete planning approaches to be applied to more complex systenpdariing techniques
are demonstrated via simulations of several robot models and experimemnteammobile robot.

Finally, the thesis concludes with a discussion of some open problems thit altmw even
more expressive and flexible planning over the policies.

1.4 Thesis Overview

Before presenting the extensions to the sequential composition apptbadhgsis addresses the
existing literature on the subject. First, to put this work in context, we providieed description
of contrasting approaches that address the navigation and contlbdéipro Next, we provide an
overview of the work that inspires this approach. The related workladas with a discussion of
some discrete planning techniques that may leverage our approach.

Chapter 3 provides an overview of our technical approach. This ieslad enumeration of the
generic policy requirements, as well as our extensions to the basic sie¢joemposition approach.
The chapter concludes with a discussion of several approaches torglan the space of control
policies.

Chapter 4 describes work on fully actuated idealized systems. This derselidify the ideas,
and highlight some of the issues. From there, Chapter 5 extends the jpaiaeh to single bodied
nonholonomically constrained mobile robots. This chapter discusses pebgydand deployment
approaches, as well has the approach to measure the completenesdeayilttyenent. Chapter 5
makes reference to several appendices that provide details abopetifcspolicy designs.

Chapter 6 presents several advanced demonstrations of planning jpatieecs control policies.
These demonstrations serve to show the flexibility of the approach, andateotfivther research.
Chapter 7 concludes with an overview of some open problems that remdundiimg: some pos-
sible approaches to discrete planning that seek to combine the strengtlesdi$ctete planning
approaches described in the thesis.

8 (© 2007 David C. Conner

Chapter 2

Related Work

The work related to this thesis comes in three general areas: contragiiogelpes, sequential com-
position, and discrete planning. The first section provides contrastéoapproach advocated by
this thesis by giving a broad overview of other approaches to addgetb&mavigation and control
problem for wheeled mobile robots. As our approach is motivated by theeségl composition
technique advocated in [21], the second section provides an overmiéyrasents work directly
related to sequential composition. The final section describes existingimwalikcrete planning
that can be used to plan in the space of control policies; leveraging thiswatlows us to expand
the type of planning used with policy composition,

2.1 Conventional Approaches

Numerous techniques have been developed over the years in an attemigtdassahe problem of
moving a robot or other dynamical system from one point to another in ar@dtenvironment;

see [22, 70, 71, 75, 118] for details. Researchers have typicalkebrie problem into different
parts, only focusing on one part, and leaving the rest to others. Sormedeehk work only in ideal

conditions; while others solve local problems, but not global problemss Séction provides an
overview of three approaches: path planning approaches that eomsidholonomic constraints,
control approaches that attempt to follow paths, and attempts to couple gamdrcontrol.

Nonholonomic Motion Planning and control This thesis specifically addresses single-bodied,
wheeled mobile robots subject to nonholonomic constraints, which limit the instoua velocity
of a system and complicate the coupled navigation and control problem. tlisscion provides
an overview of approaches that specifically address nonholonomstraons.

To recognize the complexity introduced by nonholonomic constraints, aantlid “simple”
problem of stabilizing a system about a given equilibrium point. Brocketsrdm provides nec-
essary conditions for the existence of a smooth, time-invariant feedioattotlaw that stabilizes
the system about the given point [18]. It is well known that most normfmlttc systems, although
small-time locally controllable, fail Brockett’s test [65, 94]. Several clasHestabilizing feedback
control policies have been developed: discontinuous time invariant, timmgaand hybrid control
policies [65]. Given the complexity of this “simple” control task, it is no siserthat the coupled
navigation and control task for nonholonomic systems is more complex thamlkomomicd sys-
tems.

lWe yield to common usage and refer to systems subject to nonholononstraiats as “nonholonomic systems.”
Systems without nonholonomic constraints are called “holonomic syst&mbe technically correct, it is the constraints
that are classified as holonomic and nonholonomic, not the systems.

Ignoring obstacles for the moment, there are several methods — includungp®lal inputs,
piecewise constant inputs, optimal control, and differentially flat inputs t-sthi@e the point-to-
point steering problem between two positions using open-loop control®f]3 These methods,
which are sometimes incorporated into the discrete planning systems, alegpenntrol methods
that do not respect obstacles [65, 72, 94]. Collision detection must therped by simulating
the system response to determine feasibility in a cluttered environment [B8keTpoint-to-point
steering methods are strictly open-loop, and not suitable for feedbattotorhe inevitable errors
that arise during execution necessitate repeated applications of the algoidgtinduce convergence
to the goal point.

For a cluttered environment, there are numerous planning techniqueslémoimic systems,
but fewer that simultaneously address nonholonomic constraints andlesq22, 75]. A common
planning approach is to pretend the system is holonomic and use a stalaatanidg system such as
grid-based planning or Voronoi diagrams. If a nonholonomic system if-tma locally control-
lable, any continuous path can be approximated arbitrarily well [73]. ttinfately, the methods
used to control the system along arbitrary paths often lead to highly osgiliatations that require
great control effort. If the path does not respect the system camtstréhe resulting motions may
require an inordinate number of control reversals to follow the desirdd paother approach is to
perturb the planned path to respect nonholonomic constraints [111].

Techniques that consider the nonholonomic constraints during planniigaitypuse only a
discrete set of feasible motions. The shortest feasible path (SFP) metseddaiplan paths that
approximate a holonomic path using a finite number of motions [89]. The agpreses the SFP
metric to define the largest ball around the current configuration, amdstects the shortest fea-
sible path to the point on the holonomic path that intersects the ball [120]. kiethased on
dynamic programming determine an optimal path for a discrete set of contrglsh@d left, soft
left, straight, soft right, hard right) [5, 39, 76]. Probabilistic roadmadfRNI) and rapidly-exploring
random trees (RRT) are other discrete approaches to determininglégaaibs for nonholonomi-
cally constrained systems [78, 115]. The approaches look for sadibfe paths between the current
point and a chosen sample point. With the exception of dynamic programming disesete meth-
ods are not feedback based, and require re-planning if the systeatedefrom the desired path.

Path Following Control Laws Given a path through the cluttered environment, the system re-
quires a control policy that causes the system to follow the designated pagath following
control policy is used to determine the control inputs that cause the systamverge to a desired
path if the initial condition is off the path, and to follow the path in spite of distuckan

The presence of nonholonomic constraints renders the design ofgiativihg control law a
non-linear controls problem. Most path-following algorithms assume contgwawation, with a
non-stationary path defined for all time. This temporarily avoids Brocketbblpm with stabiliza-
tion to a point [29]. The design of the control laws is often based on Lyap@analysis [32] or
feedback linearization [33, 110].

There are two basic formulations to path-following. In the first, a designaiad on the robot
traces a given path in the workspace, without concern for orientat@jn This may fail in cluttered
environments as the designated point may exactly follow a safe path, yeli@ileaother point on
the robot to collide with an obstacle. The second formulation attempts to haveltbietrack posi-
tion and orientation of a path in the free configuration space [32]. Thefpltiwing control policy
asymptotically brings the error between the desired path and the actual gattoidrypically, the
control policy is constructed for a specific vehicle and class of pat82[39, 116].

10 (© 2007 David C. Conner

In addition to path-planning, trajectories that specify when the systemnearait points along
the path may be planned [32, 110]. Trajectory-tracking problems candbéematic if the system
is subject to a constraint that delays the tracking [32]. In this case, theradated error may
make the system unstable or require unreasonably high inputs. Anotssbleoproblem is that
trajectory-tracking controls may require reverse motions along the path tt thegspecific time
and position [110]. Unless the time matching along the trajectory is crucial fpldlving is often
a better formulation [32, 110].

The path-following control laws are unaware of environmental obstatlesefore, for a nonzero
initial error or perturbation during motion, the system may collide with an obstescdown in Fig-
ure 1.2-b. Path-following may be coupled with local obstacle avoidanceg[960, 69, 113], but
this may invalidate the convergence guarantees. Thus, if the errorsggetaough, the paths must
be re-planned, starting from the current location.

Coupled Planning and Control Some attempts have been made to integrate planning and control,
most notably potential methods and optimal control techniques [93, 104].

Potential functions, which are used despite the well known local minima pmlalddress the
coupled navigation and control problem by using the potential functicegsitive gradient vector
field to determine control inputs [64]. For idealized, holonomic, kinematic Bystéhe negative
gradient vector, or any positive scalar multiple thereof, may be usedlglieeccontrol inputs. For
nonholonomic systems, most potential functions do not have gradientsetpaat the nonholo-
nomic constraints, which makes direct usage of the gradient infeasible.

For idealized holonomic second-order dynamical systems, the additionissipative term in
the control law results in convergence to a local minimum for any systememubal energy is
less than or equal to the potential on the boundaries of the free configusatiae [64, 63]. Most
potential methods used in control do not account for control inputdé®ahsecond-order dynamical
systems. Many of these methods have unbounded potential at the obstactaty [104]. Even
with bounded potentials, the control laws may not respect arbitrary dyr@mstraints on control
inputs if the potential function does not account for the total energy. [64f example, a system
near a boundary moving towards the boundary may not stop before aolisth the boundary
under gradient control if the total energy is not respected. The magnitthe potential gradient
may also vary greatly, and therefore, be unsuitable for direct control.

Optimal control techniques are closely related to potential-based navigationidees. Locally,
by following the negative gradient, a system maximally reduces the potentiain&gontrol tech-
niques build a special potential function, calledadue functionsuch that a local decision induces
the optimal trajectory for a given cost function. Given running and terheivst functions, the value
function is the solution to the Hamilton-Jacobi-Bellman (HJB) partial differeetglation [35].

A defined cost structure is fundamental to the use of optimal control taaks{g 7]. If this cost
structure is not givea priori, the cost structure must be designed to generate the desired behavior,
while guaranteeing some measure of safety and robustness. The desigh a cost/reward struc-
ture is difficult because the induced behavior is only known after thdtiestalculated. Therefore,
the design of a suitable cost function is an iterative process — defind funcion, compute the
controller, run experiments, evaluate the results, and modify the cosidnras necessary. Given
the value function, the optimal control formulation results in a global contwbty that specifies
the optimal control action for a given state.

Solving this global control problem is one of finding the appropriate valaetfon for a given
cost function by solution of the HIB; however, several problems drisgeneral, global’! smooth

(© 2007 David C. Conner 11

solutions to the HJB do not exist [35, 92]. A well known consequenctkefack of globalC'! con-
tinuity is that the optimal solutions afegile, and may be unstable for minor perturbations [57]. As
HJB equations do not generally have a closed form solution, they araliypsolved numerically
using finite element, finite difference, or dynamic programming methods [35, 92

Dynamic programming (DP) can be used to solve the HIB numerically usingd-¢éoegs itera-
tion scheme by discretizing the state and control action space [6]. Thetdisation space can be
used to model the impact of nonholonomic constraints. Although DP is extreroegrful, it suf-
fers from the well knowrturse of dimensionalityand is limited to low dimensional state spaces or
coarse approximations. Numeric solutions to the HIB equation often reglaiptize discretization
to yield an acceptable solution [92].

There have been a few attempts to address the coupled navigation anal pooldem for
nonholonomic systems. A method based on potential fields uses resistivaketorapproximate
the nonholonomic constraints [27]. This approach requires a discretizatithe configuration
space, and is therefore subject to numerical difficulties when calculatirigatives necessary for
feedback control.

Other approaches define invariant sub-manifolds in configuratior spatcontain the goal [50,
56, 85]. While the nonholonomic constraints are generally not integratstrints can be added
that render the system integrable on a configuration space sub-man@oldhis sub-manifold,
the control naturally respects the constraints and it is possible to steedtwatesignated goal
contained in the sub-manifold. The hybrid control approach drivesytbis to some point on
the sub-manifold, and then along the sub-manifold to the goal. While these meth®duitable
for feedback control implementations, determination of a suitable sub-man#althe intractable;
particularly for systems where the invariant sub-manifold is not given iseddldorm, but must be
approximated through an iterative process. The approaches alsodiladigning several functions
that require insight into the specific problem and system constraints. Whigbke for feedback
over local domains, they are generally not applicable to cluttered envirdsrdee to the difficultly
of defining the sub-manifold that avoids obstacles.

2.2 Policy Composition Approaches

Due to the limitations of existing approaches to addressing the coupled gkbgation and con-
trol problem, this thesis advocates ussegjuential compositioof local control policies, which are
easier to define in a way that satisfy system constraints [21]. Sequentiglosition enables the
construction of switched control policies with guaranteed behavior am@pte convergence prop-
erties. Since this thesis uses sequential composition as a tool to constotidt dgntrol policies,
this section begins by describing the basic sequential composition apmtefield in [21]. This
enables a better understanding of how our work extends and complimgonensial composition.
The section provides examples of applications of sequential compositionstmgxsystems, and
concludes with a discussion of some related approaches.

2.2.1 Basic Sequential Composition

The idea behind sequential composition is to compose multiple control policies &y &hat en-
larges the overall domain of attraction, while preserving the underlyingetgance guarantees.
Burridgeet al. [21] build on this simple idea by formally defined what composition means, and
defining an algorithm for constructing a hybrid control policy using this.ideslater chapters will
extend the basic approach, this section presents a formal overviewiroftirk.

12 (© 2007 David C. Conner

Sequential composition is based on a formal notiompEparesdefined among policy do-
mains [21]. The prepares concept is built upon the idea of “pre-imagle ¢tfzaining” [86]. For
a given control policy, define theafe domain of attractioas the largest region of state space that
does not intersect an obstacle and where the closed-loop behavsanatcaglow the state to exit the
region, and induces convergence to the policy’s goal. In other wirtdssafe domain of attraction
is positive invarianf that is, for any initial condition within the safe domain of attraction, the state
does not exit the domain under the influence of the policy. Henceforth, iimedmainis synony-
mous withsafe domain of attractiarFor a given policy, the domain is the pre-image of the goal set
in the sense that any state in the domain is mapped to the goal set by the actiepalidi.

Sequential composition defines a formal relationship between policy dontagha.finite col-
lection of control policiesA = {®1, ..., P}, defined over the free state space of a given system
be given, and assume at least one policy’s goal corresponds to ¢hallayoal. Given two con-
trol policies fromA, with domainsZ(®;) and goal set& (®;), ®, is said toprepare®;, denoted
Py = D, if g(@g) C @((I)l).

By properly prioritizing the collection of policies, and switching to a higherpiygolicy once
the state enters the domain of the higher priority policy, it is possible to cohatswgdtching control
policy with a larger domain of attraction than any single policy [21]. The domfattoaction of
the switched policy is equal to the union of the domains of the component policeshown in
Figure 2.1; the domain over which a given policy is active is determined byilielsng strategy.
It is easier to define policies that respect the system constraints over a lioggdddomain; by
composing local policies that respect constraints, the hybrid controlypdééined by the local
policies and switching strategy also respects the constraints. By addigtdicées that capture
additional regions of the free state space, an almost global control palicipe defined.

Prioritizing the policies is done in relation to an overall goal and the prepafasonship be-
tween policy domains. The prepares relationship between any two policieg icotlection A
induces a directed graph,, over the collection of instantiated control policies. A directed edge

Figure 2.1: Burridge-Rizzi-Koditschek defined a switching strategydane total ordering of the
policies.

(© 2007 David C. Conner 13

connecting two nodes iy corresponds to a transition that may occur when the state of the system
enters the domain of the other policy; this transition is guaranteed by theresaptationship. The
graphI'y, which we term theprepares graphdefines aransition relationbetween control poli-

cies [23]. The prepares graph approximates the continuous transisi@rses of discrete transitions
between nodes that represent the local policy domains. The act afiagsagpriority to each policy

is a form of discrete planning using the prepares graph.

In general, the prepares graph is cyclic, which can lead to limit cycles that do not reach the
goal policy; however, a directed acyclic grafif, C 'y, may be generated over the collection of
policies. Figure 2.2 shows a simple example. In [21] this is accomplished byhéegl", breadth
first, beginning at the node corresponding to the policy that stabilizes @ralbgoal, and adding
only those links and nodes that connect back to previously visited notles.directed acyclic
graphI”, can be viewed as an ordering over the collection of control policies. Bgtoaction,
the directed acyclic graph is a connected graph containing a nodemamcisg to the policy that
stabilizes the overall goal. Switching between policie$’jnis guaranteed to bring the system to
the overall goal. Under the transition map induced by the prepares refpphg represents a
finite state automata [48].

Given the collection of policies\, the switching strategy defined Y, induces an overall
switching control policy®. The union of the domains of the policies includedIify gives the
domain of the overall policy; that is

72®) = |J 22, . (2.1)

@]‘GF;\

The collection of policies im\ and the switching strategy defined by the ordeiiifijgis called a
deployment

The overall control policy induced by sequential composition is fundartgataybrid control
policy [12, 14, 48]. The composition of these local policies in a hybrid systtamework enables
analysis on the discrete representation of the transitions between policynddiié, 21]. Given
knowledge of policy domains containing the current state, one may anahat@&r another policy’s
goal is reachable using),, without the need to re-analyze the underlying continuous system [48].
This gives a simple discrete approach to deciding if a given navigatiorigenois solvable with
a particular collection of policies. This ‘reachability’ analysis may be doné&’ giprior to plan-
ning, or implicitly during construction of the acyclic grapy. That is, starting from the overall

6 ¢
g 5"

(a) Simple prepares gragh, with 3 cycles (b) Iy tree

Figure 2.2: The graph on the left has 3 cycles; the tree on the right dbeysample prepares
relationship while protecting against limit cycles. In this case, the goal ncblg.is

14 (© 2007 David C. Conner

goal, any policy added to the orderifig can drive the configurations in its domain to the goal by
construction.

The stability of the underlying control policies guarantees the stability of tkeeativswitched
policy because the ordering results in monotonic switching [21]. That igdhieies switch from
lower priority to higher priority policies. This obviates the need for complédxiuystability analysis
of the form given in [11, 13, 30, 79]. Disturbances, which may careydtate to the domain of a
lower priority policy, are robustly handled provided their magnitude andafadecurrence is small
compared to the convergence of the individual policies [21]. The dvawatrol policy resulting
from the partial order covers the largest region of the free state $pa@egiven collection of control
policies, while guaranteeing that any state in the union of the individual demsialtimately
brought to the goal.

Burridgeet al. [21] demonstrate sequential composition on a robot that juggles a pirgy-pon
ball by repeatedly batting the ball with a paddle. The robot is tasked with matimdpall by
juggling through its environment while avoiding obstacles. In this case, thiadbs are sensor
limits (camera field of view) and a physical obstacle in the workspace. Bergtal. define a
policy with free parameters; changing the parameter values changesuheirp ball’'s steady
state horizontal position and apex height above the horizontal planelidy path free parameters
is called ageneric policy assigning specific parameters values results ifnatantiation of the
generic policy. By making slight modifications to the basic policy, they defiratlaation of generic
policies termed palette[21] .

Burridge et al. [21] use a manual approach to ordering the policies. Starting with a single
policy that stabilizes the overall goal, multiple policies are instantiated in the sysheza’space by
specifying a collection of set-points and other control policy gains foegempolicies chosen from
the palette. These instantiated policies form the collectionThe instantiation of the policies is
performed manually.

The policies are added in sequence to create a total dfdef the policies while the collection
A is being defined; the prepares test is performed against the compositahhigher priority
policies. Given the current state estimate, the complete list of policies is seaftdm highest
priority to lowest priority for a policy that contains the current state; thdicpas then executed.
The experimental results demonstrate that the sequential composition texhepgatedly brought
the ball to the overall goal in spite of perturbations, thus demonstrating tieesintrobustness of
the technique [21].

2.2.2 Applications of Sequential Composition

The idea of sequential composition has been used for several robstigs, In this sub-section,
we provide an overview of these related works.

Rizzi [105] uses sequential composition to simplify motion programming for tise o& an
idealized holonomic second-order dynamical roljot; « with both the control inputs and con-
figurationg in IR™. The robot is subject to velocity and acceleration constraints in the form of
Euclidean norm bounds. Sequential composition guarantees the owdrallior of the system by
using control calculations specified over a convex polytope in the caafign space. Rizzi spec-
ifies the global motion by specifying a goal point for a single policy to lie withirogearlapping
convex polytope.

By specifying a goal point within the boundary of an overlapping polyjdipe control policies
over each polytope can be composed to move the idealized system thraoghirsio the domain
of another switched policy defined over the adjacent polytope [105fceSime goal point of one
polytope is at rest, the policy of the first polytope trivially prepares the paiiche next polytope,

(© 2007 David C. Conner 15

provided the goal point is included in the interior of the next polytope. Bsirihg a series of
overlapping polytopes, with appropriate goal points, the system is indoceubve to an overall
goal based on the sequential composition of the individual policies. Thtig initial state lies
within the savable set of any policy in the deployment, the system is guaramotéedbrought to
rest at the overall goal.

Quaid and Rizzi [103] extend this basic approach to more complicated baumacceleration
and velocity found with planar motors. Safety is enforced in a dynamic multitreinaronment
by only activating policies whose domain does not overlap with a polytopesmonding to a valid
policy of another robot.

Yang and Lavalle [123] develop a similar approach to Rizzi [105], extegr version is re-
stricted to kinematic systems and does not consider input bounds. Theg dgdbtential function
over a ball in configuration space. The balls are then distributed throtgloofiguration space
using a graph-based sampling technique. The overlapping balls sergarties function as the
overlapping polytopes in Rizzi’'s approach. In parallel work, Brocll &avraki [17] use balls in
workspace to define a connected tunnel through workspace, andgbhenpotential-based control
policy to drive the system through the tunnel. Pathak and Agrawal [98y&rock and Kavraki’'s
method to circular wheeled mobile robots by defining convergent switchinggai@olicies over
circular regions of obstacle free space.

Sequential composition has also been used to control wheeled mobile rakatgor and
Rizzi [55] define visual servoing control policies for a nonholonomiicyeie with a limited field of
view. Their approach uses variable constraint control to define amanederize individual control
policies. Patekt al. [97] use sequential composition to define switching policies for a nonholo-
nomic wheelchair that navigates through a doorway using visual servathga limited field of
view. In both cases, the control policies are designed based on Icanalysis of the system, its
constraints, and the problem at hand; the deployment is carefully cotestrioy hand to enforce the
prepares relationship.

Both Kantor’s and Patel’'s approaches have the key feature that maing wfdividual policies
are not designed to converge to a single point. In the later example, thé 6§tz highest priority
policy is to drive through a doorway [97]. It is assumed that anothetrabpolicy will become ac-
tive after the vehicle passes through the doorway. This thesis exppodshis idea oflow-through
policies, and formalizes some extensions to the basic sequential compositiniytex[25].

Lindemann and LaValle [83, 82, 84] follow our approach [25], andraefiow-through vector
fields over disjoint regions of free space. Their approach uses exdtiff vector field generation
technique, and is extended to cylindrical algebraic decompositions. THeisvapplied to point
nonholonomic systems with bounded steering, but unbounded contrasifg§l. Their work is
fundamentally an application of the sequential composition techniques ddsdoga this thesis.
Their approach differs from this work in that their focus is on theoretioatpleteness and smooth-
ness for simpler systems, while this thesis explicitly considers the interactiaibof body shape
and input bounds, and discusses the planning aspects of the work irdataile

Related Approaches There has been other work in control policy composition techniques that
are not directly derived from sequential composition, even though theaphes are similar or in
some cases an extension of the basic idea.

Branicky [14, 15] describesl@ehavioral programmingechnique in a hybrid systems formalism
that is congruous with the sequential compaosition approach advocated ihdbis. Fast marching
methods were used to define local policies for fully actuated systems. Tdeegeolicies obey a
prepares relationship, which allow them to be composed. Branicky fe@rséhe high-level view

16 (© 2007 David C. Conner

of the approach, and its application as a “middle-out” approach to planiriagead of a top-down
conventional planning approach, or a bottom-up reactive approade apers advocate a “middle-
out” approach where there is a systematic way of predictably translatingodigrtdsk descriptions
into feedback control policies.

The “flow-through” policy design approach has been applied to pieeeaffsre systems using
policies defined over simplices, which are triangles in the plane or pyramiBs [i, 44, 45, 107].
Habetset al. [44, 45, 46] define necessary and sufficient conditions for pieecafifine control
policies that drive the system to a designated facet or set of facetsantoraddress the reachability
problem for a hybrid system defined over a collection of simplices. Thisleathe synthesis of
switching control policies that flow from simplex to simplex toward an overadl gd/hile typically
described in a hybrid systems formalism, these approaches are instheegsential composition
of local policies. Roszak and Broucke [107] provide new necessadysufficient conditions for
n-dimensional linear affine systems with- 1 inputs. These conditions reduce the general problem
to a set of at most linear programming problems.

Beltaet al. [7] use piecewise affine control policies defined over simplices to symthes
hybrid control policy. In their work, the focus is on planning in the discidtstraction and not
defining a global policy. Their approach defines a sequence of simpliaestlst be navigated,
and then defines policies over each simplex that induces the desired-ogpeshotion. These
methods were originally developed for idealized holonomic systems, but magdied to point
nonholonomic systems using feedback linearization [7]. However, thgseaches do not apply to
systems with non-trivial body shapes, and cannot guarantee that tagdecksystem does not “cut
a corner” between polytopes and collide with an obstacle.

Frazzoliet al. [41] uses language similar to sequential composition to descriheguver au-
tomaton There the focus is on defining the relationship between open-loop motiitipes, and
specifying which motion primitives may be concatenated based on a pregigieselationship;
this contrasts with conventional dynamic programming methods which implicitly astwanell
motions in the discrete set are always feasible. The maneuver automated ig @ open-loop
motion planning strategy that uses optimal control over the finite set of motianitipes to deter-
mine the values of certain free parameters. The previously selected neameownstraint the set
of admissible maneuvers for the next step. By obeying the relationshipgisgén the maneuver
automaton, aggressive maneuvers can be incorporated into the plamamreyork. The maneuver
automaton is fundamentally an open-loop planning method, and does nalydsgecify domains
or feedback control policies.

Several existing control paradigms use a more general form of poliopasition. One example
is variable structure control [31]. More closely related to sequential ositipn is work on “patchy
vector fields” [2]. These approaches generally consider stabilizafionrdinear systems, and are
not concerned with the planning across the composed policies, nor tiamigeoblems.

2.3 Discrete Planning Methods

The works described in the previous section have been applied to solyagieular navigation

problem, that is defining a global control policy that brings the system tigmnkgted goal point.

This does not not fully exploit the power of sequential composition. In #isien, several discrete
planning approaches are described at a high level; these appradicefiexible symbolic plan-

ning on the prepares graph defined by policy composition. Chapter Bloesthe approaches in
more detail, and discusses their pros and cons as they relate to spedifiatapys of sequential

composition.

(© 2007 David C. Conner 17

The most basic approach, as followed by [21], is to define a total ofdiieqolicies. Here,
each policy is assigned a priority ordering based on the prepares rsldfiofhe ordering may be
searched from highest priority to lowest, with the highest priority policy sehdomain contains the
current state being executed. This ordering may be constructed witkjglidiy constructing the
entire prepares graph [21]. This approach is useful for bringingyktem to a single overall goal.

Given the explicit prepares graph, which may very well be cyclic, thplgmaay be converted to
a tree using basic graph search algorithms such as Dijkstra’s algoritbi{08]. Variants ofA*
such asD*, D*-lite, and D D*-lite are used to rapidly reorder policies when some policies become
invalid due to additional information gathered during execution [114, 8], B8e D* algorithm,
originally developed for grid based path planning, facilitates fast reAphgnbased on changes in
the graph cost structure [114]. A similar, but algorithmically differensiar, calledD*-lite has
been applied to Markov Decision Processes, which are similar to gragtusts but support non-
deterministic outcomes [81]. The approach uses a Mini-max planning algawtptan for the best
action considering the worst outcome of each transition.

Given an appropriate transition relation, like the prepares graph, trec@k has focused on
symbolic planning that satisfies high-level specifications, and tasks witiyaalls that temporally
depend on each other. Model checking tools [23] have been usedédoage sequences of policies
whose invocation induce behaviors that satisfy high-level specificagimes in linear temporal
logic [36, 37, 61]. Linear temporal logic (LTL) [34] combines the standagic operators ‘NOT’,
‘AND’, and ‘OR’ with temporal connectives such as ‘NEXT’, ‘ALWAYS'EVENTUALLY’, and
‘UNTIL. This allows specifications such as “visit region A after region gt never region C.”
Using the prepares graph, a sequence of policies is defined that snithéceorrect behavior. This
model checking-based planning produces a sequence of policieoaadylobal policy; the plan-
ning step must be rerun in the face of disturbances [36].

As a step toward a feedback-based temporal planning, Kress&atit[68] use the automata
synthesis algorithm of [102] to generate an automaton from the prepagls. dJsing the policies
described in Chapter 4, [68] generates an automaton that executefemtizd.ck control policies in
order to satisfy temporal specifications. As the system is an automatonpgjuginan open loop
sequence of policies, the system is able to respond to environmental itifomrgathered during
run time. The closed-loop behavior satisfies the high-level specificatiomded in a subset of
LTL.

18 (© 2007 David C. Conner

19

Chapter 3

Overview of Technical Approach

This chapter presents extensions to the basic sequential composition tectei&gribed in [21].
These extensions allow for more general policy types and preparéemsldps, thereby increasing
the flexibility of the approach. General definitions that help formalize theudfon are given;
model specific details are withheld until Chapters 4 and 5. This chapteedéfia requirements for
“composable” policies that later guide the development of the feedbackgmlic

The chapter’s first section gives general definitions and notation tiisedghout the thesis.
The second section briefly describes the us#@avi-throughpolicies. The chapter’s third section
describes four policy requirements that are necessary for compgsaldies. The focus is on the
high-level requirements; later chapters deal with the specific requireroevasious robot models
and specific policy designs. The fourth section discusses the baswagpps to planning in the
space of control policies. This section serves to highlight the issues ade-tffs involved in
several approaches by focusing on a simple example.

3.1 Basic Definitions

In order to develop our approach in a formal sense, we preserniea sédefinitions. The robot is a
single rigid body that moves on a bounded planar workspsice IR%. The workspace is cluttered
with a finite number of obstacles, which are represented as unions oéxoagionsO;. The
robotconfiguration denotedy, is the minimum size set of variables required to specify the position
of every point on the robot [22]. The number and type of variablesahatrequired varies with
different systems. The configuration spazgés the space of all possible configurations. Bdy) C

W denote the workspace area occupied by the robot at configurationonfiguration is said to be
collision free if, for all obstaclesR (¢) () O; = 0. Thus, the obstacles in the environment constrain
the set of admissible collision free robot configurations; the set of collfs@configurations, or
free configuration spacés denoteds,.. C Q, Where

eree: {qG QR(Q)HUO@:(D}

For a more in depth presentation of these definitions, refer to Appendix A.

The stateof the system is the minimum information necessary to specify the motion of the sys-
tem. Forkinematic or first-order systems, the state is simply the configuratidy definition, the
state of second-order systems{ig ¢}. Denote the state space of the system, whether kinematic
or second-order, a&. For kinematic systems, the free state space is SimAply, = Qpe.. FOr

second-order systems, the naive definitiotkjs. = 7 O, the tangent bundle of the free con-
figuration space. However, for systems with bounded acceleratioms,areevelocities at points in
the free configuration space that make collision unavoidable; thius, C T'Ogce, With regions of
inevitable collisionexcluded [40, 77].

The focus in this thesis is on defining memoryless state feedback contraepolic feedback
policy, denotedb : X — U, is a mapping between the system state and its allowable control inputs,
wherel/ denotes the bounded input space. The policy generally has a limited dén@inc X'.
We consider the general nonlinear equation of motioa f (x,u) wheref : X x U — TX for
x € X andu € U. Therefore, the closed loop system dynamics are given by f (z, ® (x)),
which defines a vector field : 2(®) — 7 X over the policy domain wittX' = f o ®.

Define the closed-looflow, X, (z), of the vector field, where the parametespecifies motion
along integral curves of the vector field from initial conditionthat is, how the system moves as
time evolves. Figure 3.1 provides a schematic picture of this definition. Thehtsvihe following
properties: Xy (z) = x and %Xt () = X (X¢(2) = f(Xe(2),P(X¢(2))). Implicit in this
definition is the assumption that composition of the policy and the equations of nsatiisfy the
requirements for the existence of a solution to the ordinary differentistesyuencoded in the
vector field [8, 117]. Foconvergent policieghere is a designated goal $&t®) C Z(®) such that
forall z € 2(®), there exists € [0, c0) such thatX; (z) € ¢(®). First, unlike the prior work that
considered only point goals, this definition allows for full dimensional ge#s. That is, the goal
can be a neighborhood and not just a single goal point. Second, nothithdefinition does not
require the state to remain in the goal set, which opens the ddlomiethroughpolicies.

3.2 Flow-through Policies

Where conventional sequential composition techniques [21, 105] ws@dptotically stable state
feedback control policies, this thesis allows what we terrficag-throughpolicies.

Definition: Flow-through policy: A flow-through policys a policy whose goal set is on the bound-
ary of the domain. Invoking the policy will cause any initial state in the policy donwexit
the domain by passing through the goal set. The system does not stop oatlseg

Figure 3.1: The vector field flow for an initial point is shown by the dotted line. The point
indicated byX; o (z¢) indicates the point obtained by flowing along the vector field from the initial
point for one unit of time.

20 (© 2007 David C. Conner

In other words, the policy eventually brings all states within its domain to thesgabut the state
does not necessarily remain in the goal set.

Flow through policies have several benefits. First, flow-through poli@asrally encode certain
high-level behaviors such as “leave this room via the doorway” [92¢08d, flow-through policies
allow the policy designer to put off the implications of Brockett's theorem, whrclrides necessary
conditions for the existence of smooth stabilizing control laws [18]. Thiegjitie control designer
more flexibility by allowing the local control policies to be smooth and time invariahiiewvelying
on the switching strategy of the overarching hybrid control policy to reib@rthe constraints of
Brockett's theorem. Finally, flow-through policies give the control desighe freedom to match
vector fields at policy boundaries.

The major drawback to flow-through policies is the more complicated prepesesWhereas
asymptotically stable policies have atrivial prepares test based on a sindjiiguration at rest [105],
flow-through policies require a prepares test based on the full statdirfemnatic systems the test
remains a configuration-based test; however, for second ordensyste test is based on configu-
ration and configuration velocity.

3.3 Composability Requirements for Local Policies

As this thesis seeks to compose local feedback control policies as illusinatédure 3.2, the
guestion arises, “what are the necessary properties of policies that @lmposition within the
sequential composition framework?” In this section, four necessapepties are defined that make
the feedback control policies composable. Here the focus is on basicaments; Chapters 4 and 5
specialize these general requirements to the specific system models &l policies developed
therein. To satisfy the requirements, a policy must be realizable on a gigensg that is, a given
policy may satisfy the requirements for one system but not another.

3.3.1 Collision Free

For a policy to be valid within the sequential composition framework, it must fee $hat is, over
its entire domain it must be collision free. Consider Figure 3.3, the same polwgida@an be safe

\

9 (@.] 09(®4)

Figure 3.2: Composition of multiple policies. The two-dimensional iconic funregtsesent the
boundaries of multiple control policies; the goal set and domain boundaby @re labeled.

(© 2007 David C. Conner 21

Collision! - Policy Not Valid

N

@ (b) (©

Figure 3.3: The policy domain must lie within the free state space of the vehic#.ig, all states

in the domain must be free of collision for a specific vehicle size and shagee, lthe iconic
funnels represerthe workspace projection of a slicd# a idealized policy domain. The policy is
defined for the(z, y, #) reference on a rigid body; the slice is taken at a fixed body orientation.
Three different vehicle body sizes are shown as dark polygons; thiegigy polygons shown in
the figures represent the convolution of each vehicle body along theilbmandary. The vehicles
shown at (a) and (b) are collision free at this orientation; vehicle (c) wilide for some states in
this domain.

or unsafe based on the size and shape of the vehicle. It is thereforeatimpehat any proposed
policy design approach have a tractable method of verifying the safety ofstantiated policy;
that is, a policy whose free parameters are assigned specific valuggvihétte policy domain a
particular shape. Chapter 5 presents a method that maps points on the polaindoundary to the
full body extent in workspace. This allows for direct intersection tests thigtworkspace obstacles.
This approach greatly simplifies the collision tests, relative to the alternata@structing the free
state space boundary by enlarging the obstacles, and excluding thesrefinevitable collision,
and then testing for intersection with the policy domain.

3.3.2 Convergentin Finite Time

For each policy deployed within the sequential composition framework, it brishown that the
policy induces convergence to its goal set in finite time. In order to do désptanning on the
graph, it is necessary to guarantee that the desired discrete transiti@nisaly enabled. If the
system does reach its goal set, and the two policies have a preparesisbigtiohen the transition
is enabled. This contrasts with a system that stops inside the policy domamgages in a limit
cycle, and thus never enters the goal set. In these cases, the systemtmeach the domain of the
next policy. Note that the behavior within the goal set is unrestricted; stgpgthin the goal set is
allowed, as is limit cycle behavior.

Formally, this requirement is for all statese 2(®), there exists a finite timé& < [0, c0) at
which X7 () € 4(®) for X = f o ®. Obviously, for good performance, the maximum elapsed
time taken for any point in the policy domain to reach the goal set should rretdte/ely large.

22 (© 2007 David C. Conner

3.3.3 Conditionally Invariant

To guarantee that a policy is safe to invoke, the system must remain in thel@afdn of the
policy until the time at which the state enters the goal set. This property, tecoretitional in-
variance[56], requires that once a policy becomes active for any state in the dpthaisystem
state does not exit the domain of a policy except via the designated g@ad ketg as that policy
remains active. Formally, the domai(®) is conditionally-positive invariantinder the influence
of policy ® with goal set?(®), if for all statesr € 2(®), T' € [0, co) is the smallest time such that
Xr (z) € 9(®), andX; (z) € 2(®) for all t € [0, T]. For flow-through policies, once the system
state exits the domain via the goal set, the overall safety of the approagbeisdiat on switching
to another safe policy. By composing only safe policies according to thmapee relationship, the
overall hybrid control strategy is safe.

To enforce conditional invariance, the policy is subject to the necesssirnjction that for each
state on the domain boundary there exists a control input that induces ardipwinting velocity
along the domain boundary, excluding the goal set for flow-throughipslid-or a state: on the
domain boundary, and outward pointing normdl:), the induced velocity is constrained such that
n(x) - & < 0; as shown in Figure 3.4. Given the equations of motion, this requirementecan b
rewrittenn (x) - f (z,u) < 0. Therefore, the minimal necessary condition for conditional positive
invariance is that for all boundary pointse 02(®) the set{fu e U | n(z) - f (z,u) < 0} is not
empty. Given a bounded input set, this constraint has the effect of limitingizeeand shape of
the policy domain boundary. Chapter 5 shows how to map this boundary hoonsraint for each
state into a half-space constraint on the bounded input space; this ®aatiieple test for validity
across the policy domain boundary.

Figure 3.4: The integral curves of the closed-loop system can crodsithan boundary only at the
goal set. Thus, for points along the domain boundary, the induced veloagybe inward pointing.
Thatisz (t) - n(z (t)) < 0, wheren (z) is an outward pointing surface normal &att) on the
boundary and: (¢) is the system velocity under the influence of the policy.

(© 2007 David C. Conner 23

3.3.4 Efficient Inclusion Tests

As this hybrid control scheme is to be executed in real time, and the methocdeis drasesting for
transition from one domain to another, the system must have efficient testerfain inclusion.

The need for efficient tests, which may be calculated over many policiésgdargiven control
calculation, guides the choice of policy representation. Consider the Blagésted in Figure 3.5.
Statez; is in the domain ofb 4 but not® g, statexs is in the domain of both, and statg is outside

the domain of bothb 4, and®p. There are several possible domain representations for a given
policy. Chapters 4 and 5 describe simple geometric shapes used to defpsichielomains in this
thesis.

In summary, policies that respect the system constraints, have simple inclests, are com-
pletely contained in the free state space, are conditionally invariant, arcahaactor field flow that
converges to a well defined goal set in finite time may be deployed in this rstgjusmposition
framework. Given a specific system model, workspace obstacles,camdiéd input sel/, these
conditions limit the size and shape of the policy domains. Chapters 4 andénptke design of
severalgenericpolicies that satisfy these requirements for a variety of system modelse pbés
cies serve as examples; any policy that satisfies the requirements gireemae be incorporated
into the hybrid planning and control framework described in this thesis.

Figure 3.5: Successful operations depends on simple and efficientrdmolasion tests. Point;
is in the domain of iconic policy A only, points is the domain of both policies A and B, and point
x3 is outside of both domains.

24 (© 2007 David C. Conner

3.4 Extended Prepares Definition

Sequential composition, as defined by [21], specifies a relationship athengolicies. Finite
time convergence coupled with conditional positive invariance inducessitica relation between
a given policy domain and the domain of another policy which contains thesgoaif the first
policy. Recall from Section 2.2.1, that this pairwise relation between policiesllsd aprepares
relationship, denoted; = ®; [21]. In order to induce a prepares relationship with the size of
the goal set ofp; is necessarily limited because the goal set must be contained in the dondgin of
which is a bounded region.

To provide more flexibility in planning, it is useful to consider larger go&s @t covered by a
single policy domain. Therefore, we extend the conventional definitigomegdaresfrom a relation
between two policies, to a relation between a policy and a set of policies.

Definition: Prepares: A selected policy®;, preparesa set of policies if the goal set of the selected
policy, ¢4(®;), is contained in the union of the domains of the policies in the set. That is,

An example is shown in Figure 3.6-a.

This added flexibility in the definition of prepares introduces added complexitye discrete
transition relation encoded in the prepares graph. Thus, the ability to dafger goal sets via
the extended prepares definition bears a cost that is borne by theteliglenening. The flow along
a vector field is mathematically determinate; therefore, from any initial condititmnuthe sin-
gle policy the flow will result in a transition specific policies in the union. On thesiotiand,
the discrete transition relation encoded by the extended prepares rdigiiaan approximation.
From the point of view of the discrete relationship, the transition is non-uétéstic, and can-
not be represented by a simple graph. The nondeterminacy can beemfeict as aaction with
multiple outcomesas shown in Figure 3.6-b. This representation is common with Markov Dacisio
Processes (MDP) [81, 122]. From the perspective of the discretaiptasystem, the choice of out-
come isexternallyimposed on the discrete transition relation by the closed-loop system dynamics.

(@ (b)

Figure 3.6: Example of the extended prepares definition using iconicliura)dolicy® , prepares
neither® 4 nor ®p, but does prepar@ 4 | J®p and®. b) Transition relation. From the discrete
planning perspective, the choice of transition frdrp to ® 4 or ¢ 5 is non-deterministic; that is,

it is imposedexternallyby the closed-loop system dynamics. The discrete planning method must
account for either possibility.

(© 2007 David C. Conner 25

So long as the planning system takes each possible outcome into accourgnsigotn relation is
valid for planning. We will abuse notation and continue to refer to the transiglation as a “pre-
pares graph”, even for the case of non-deterministic outcomes indyctt lextended prepares
relationship.

3.5 Policy Space Planning

This section highlights several issues involved in planning over a collectiaomifol policies
that satisfy the above requirements. Several approaches to defintobisg strategies among the
policies are discussed; these approaches make use of existing disargtig techniques. The
discussion extends the basic partial order approach presented.ifT[#4 thesis work enables ad-
vanced planning techniques to be applied to systems with more complex dynahiosrestraints.

The planning takes place in the space of instantiated local feedbacklgmiicges. Recall from
Section 2.2.1, that thealetteis a collection of generic policies; that is policies with free parameters.
Policies arénstantiatedby assigning specific parameter values to a generic policy chosen from the
palette. Given a collection of instantiated policies, which we caude of policies, planning
involves defining a switching strategy among those policies to addressratgsie The suite of
policies and the switching strategy is calledeployment

To illustrate the types of planning that are possible on the discrete prapamds consider the
“toy” example shown in Figure 3.7. Here 26 policies are instantiated over dhleswace with three
obstacles; these policies make up the sttite {®4,...,P,}. The policy domains are shown in
Figure 3.7-a, and the associated prepares giaphs shown in Figure 3.7-b. The figure shows one
example of the extended prepares definition wiith = {®x, @y }. Two policies,®y and® , do
not prepare any others. As is generally the case, the preparesigiayalic.

In the discussion that follows, some planning methods use a cost assaeaiitedch transition
to facilitate policy ordering. In this example, a heuristic cost has been a&sktgreach edge in the
graph shown in Figure 3.7-b. This section does not address how tteearesassigned.

In the subsequent discussion, the switching strategies are often mosddilgitceautomata, with
nodes and transitions between nodes. For each node there is antasgispeiiy that is executed
upon transition into the node. Initially, there is a one-to-one correspaedestween nodes and
policies; later, as temporal dependencies are incorporated, the autoithdtave multiple nodes
that map to a single policy. For this reason, this discussion will enforce adistinbetween a
node in the automata representation and its associated control policyitibrengepresent switches
between policies governed by the continuous state evolution into the domapobéwassociated
with a child node; that is, the transitions are enabled with the state enters théindufragpolicy
associated with a child node.

For transitions based on the extended prepares definition, the transitidrevaidisociated with
a non-deterministic outcome, and the finite automata may more properly be moseddaakov
Decision process. Here the transition is an action, with multiple outcomes. Tiba egpresents
a desired transition to a set of nodes associated with the set of policies irtémeled prepares.
The transition is enables as soon as the system state enters the domainaf@rgssociated with
an outcome node. This thesis will use the term finite automata to encompass ttietaoministic
outcomes.

For simple navigation to an overall goal, we assume the existence of a sirglzistg policy,
which will be referred to as the “goal policy.” The node in the automatonistetsociated with the
goal policy will be the termed the “goal node.” In some cases, where 8terayhas a known initial

26 (© 2007 David C. Conner

(b)

Figure 3.7: Given the collection of iconic policidsshown in (a), the discrete transition relatiog
shown in (b) encodes the “prepares” relationship between policiess thieucontinuous behavior
of the system is abstracted as a discrete set of transitions between patieyndo Each transition
shows an associated heuristic cost that may be used in planning.

condition, references to the “initial policy” and “initial node” are made agrapriate, where the
initial state is contained in the domain of the initial policy.

(© 2007 David C. Conner 27

3.5.1 Sequence-based Planning

The most basic type of planning in the space of policies is to define a segagpalicies that drive

the system to the goal. This is accomplished by determining a sequence &f atstecalled a
“walk”® , through grapH s that connects the goal node with the initial node. In the toy example
shown in Figure 3.8p¢ is designated as the goal policy, whilg, is the initial policy; that is®'s
domain contains the initial state. The path induced by invoking policies alongrtiezeal walk

IMany modern texts refer to this as a “path.” We chose to reserve the pertin“to refer to the sequence of configu-
rations of the system, and use the alternate term “walk” instead [121]

(b)

Figure 3.8: Given a goal7, corresponding to the goal set of poli®y- in Figure 3.7, and an initial
condition contained in the domain &, the discrete planning system can specify a sequence of
policies to invoke by searching the prepares graph. Figure 3.8-a shpatk through the workspace
that may be induced by executing the policies according to the sequenee ishd). The numbers
below each node denote the cumulative cost based on the edge costs&3-igu

28 (© 2007 David C. Conner

¢g — dp — P — P — D¢ flows from the initial state to the goal set ®f.. The workspace
path is never explicitly defined, but is induced by the closed loop dynamitiseofystem. We
note that the choice obg over ® p was made based on the heuristic costs; other criteria, such as
robustness, might lead tbp being chosen.

Sequential planning has several advantages over conventional |patiing. Instead of the
“thin” path through configuration space defined by many path planning methiis graph walk
corresponds to a “thick” path that corresponds to the policy domains. Misturbances do not
require replanning provided the perturbation remains in the current fgotioynain. As the safe
domains are explicitly defined, the system can readily test to see if replaismegessary.

Numerous graph planning tools, such as Dijkstra’s algoritArn,and D* variants, are avail-
able for determining a valid walk [108]. The planning methods can determioptanal graph walk
based on heuristic costs assigned to the edges connecting nodes. Udeelipdth will not necessar-
ily be the optimal path as the heuristic costs assigned to the prepares guegderd some average
cost of activating a policy over its entire domain, and not a cost specifietmttuced trajectory.
For large perturbations, or if additional information received duringcetien invalidates certain
policies, approaches such BS allow for rapid replanning on the discrete graph [114, 81, 88]. As
replanning occurs on the discrete graph it has the potential to be muchtfastidor conventional
grid-based approaches.

In addition to basic graph walks, temporal specifications can be satisfiedldigg discrete
states to an automaton that specifies the allowable transitions in the prezeoie$3§, 37, 61]. The
search problem in the automaton becomes exponential in the number of tespecdications,
therefore model checking approaches are commonly used. Mostaapgsoconsidering temporal
specifications in use at this time do not consider heuristic costs, and ontydeorthe discrete
transitions. The sequence must be re-planned if the temporal specifich#inges [36].

Sequence-based approaches have two fundamental drawbacks. th&roverall domain is
smaller than for the order-based approaches described next. Asstgsences are open loop
walks, the walk must be re-planned if significant disturbances take thensymut of the domains
of policies in the sequence; thus, the sequence-based hybrid systsystoae robustness to dis-
turbance. While the policy domains represent a “thicker” path, the domaitillisat “global”
because not all policies are used. Second, as the policies must béeekiecsequence, the system
cannot take advantage of opportunistic jumps to higher priority policiess,Tthe sequences re-
strict the system to invoking the policies according to discrete transitions, \ahécht best a coarse
approximation of the closed loop behavior.

3.5.2 Order-based Planning

For navigation to a single goal, order-based approaches offer a tpleg, execute many times”
strategy. The decision regarding which specific policy is executed isrddfantil run time; poli-
cies whose domains contain the current state are executed accordingpiteelefined ordering.
Given any initial state in the domain of any policy within the ordering, the hyboicy will bring
the system to the designated goal; that is, hybrid policy approximates thedlgsibal policy.
Fundamentally, order-based approaches have a larger domain thacificgmlicy sequence that
solves a single navigation problem.

With order-based approaches the entire collection of policies is condjdbezefore, the order-
based approach is more robust than the sequence-based appheaelonly some policies are used
in the deployment. In the face of a disturbance, as long as the system statasén the domain of
at least one policy in the ordering, the execution continues.

(© 2007 David C. Conner 29

In this subsection three types of orderings are considered: totallyeatdists, finite automata,
and partial orders. We begin with the more concrete examples of ordetednis finite automata,
and then describe the more abstract partial order.

By considering heuristic costs assigned to the prepares graph, atelipaener can order of
all the policies in the suite based on the cumulative cost to goal. In generabrtliersion from a
generally cyclic transition relation encoded by the prepares graph, toyaticatransition relation
with a single goal is not unique. While the choice between some transitions maynrarbitrary,
the cost-based ordering provides a systematic approach defining agwiiciiing strategy.

Dijkstra’s algorithm, A*, D*, and other variants may be used to convert the cyclic prepares
graph into an acyclic directed transition relation with cumulative costs assigrestth node. Each
node in this tree-like structure maps to a node in the prepares graph,rzcedtbe particular policy.
Each transition maps to one edge in the prepares graph, such that thigotrgr@nts to a node,
or nodes in case of extended prepares, with the minimum cost to goal. Tis#titnas between
associated nodes must have an associated edge in the preparesrgsyphbolic planning terms,
the transitions in this tree-like structure encode a “policy” for each nodesiptbpares graph; that
is, at a given node with associated policy, the transition points to a nodei@ssbwith a prepared
policy that represents the best choice to minimize cost. This thesis resesvesthpolicy to mean
“continuous feedback control policy”, and will use the term “action” tacke the desired transition.

D* and its variants allow for rapid reordering of the tree-like structure asinfsmation is
obtained that changes the cost structure of the graph. For examplepiicg pecomes invalid
based on a newly discovered obstacle, D* allows the relevant nodes ofdkring to be rearranged
without required a complete re-plan.

Figure 3.9 shows the tree-like representation with cumulative node cogisedsthe acyclic
transition relatiorl”y is constructed from the prepares graph from Figure & is the goal node.
Note that in constructing the transition relation in Figure 39, is at lower priority than either
dx or yy. This is required because of the external choice imposed upon the edtpnepares
relationship. Also, note that the designated goal cannot be reachadbfyoand ® ;; therefore,
these policies are removed fraitj and the domains of these policies are not included in the over
all hybrid policy domain.

Given the assigned costs to each node in the tree-like structure, theagrcden be executed as
a finite automata model that corresponds to the tree-like structure, or afiyadaodared list based
on the assigned costs. We begin with the discussion of the list-based taal ord

One execution strategy is to convert the tree-like structure to an orderetipislicies based on
the cumulative costs assigned to each node. While there may be some adbitiaey involved if
nodes have the same cumulative costs, the list results in a total order oflitieqpdf the domain
inclusion tests are relatively fast, and the number of policies relatively smail,iths possible to
search an ordered list of policies from highest to lowest priority at eaatroller time stefy and
execute the first policy whose domain contains the current state.

Consider the following examples shown in Figure 3.10. Sfités contained in the domains
of both &g and ®r; @, is executed based on the total ordering induced by the costs shown in
Figure 3.9.® is assigned higher priority thahp 3. During execution, a disturbance causes the
trajectory to exit the domain &bz as shown in Figure 3.10. AB), is also a valid policy, a search
over the total order choosds, and continues execution on its way to the overall goal. Thus, the
system can automatically react to disturbances using the total order. Asdotig disturbances

2The policies are designed as continuous policies, but execution of thiel flegmtroller on a computer introduces a
discrete time step.

3Graphs are often drawn with the root node at the top, therefore, lateitp policies are on lower layers. Here, the
graphs are drawn horizontally with the root on the left to save space. ilMetain the higher/lower terminology.

30 (© 2007 David C. Conner

Figure 3.9: The prepares graph is converted from a cyclic graph to an acyclic tree-like structure
I"y. This structure is not a true tree due to the non-deterministic transitionseshbgdhe extended
prepares relation. The cumulative path cost is shown at each node.

are infrequent relative to the overall convergence rate, this methotideas proven robust [21].
The statess; andSs demonstrate the non-determinism inherent in the extended prepares definitio
the induced trajectories from both states pass throbgh but take different routes through the
graph and workspace because of different policies that are invaskéte induced trajectories enter
different domains.

The benefit of the list-based total order approach is that it allows oppstittswitching; if a
disturbance or induced trajectory takes the system state into the domain biea pigrity policy,
then that policy can be executed immediately, without waiting for transitionsghroiermediate
child nodes. For example, consider the paths startingy ah Figure 3.10. The policie$s and
® 5 overlap and are both prepared ®y. In Figure 3.9,®; is assigned to transition @ based
on the higher cost of the edge frody to ®;. The path labeled ‘a’ illustrates the path induced
by following the this policy switching strategy. On the other hand, a list-basedution strategy
allows the opportunistic switch to nodeg; as soon as the state enters the domaib@fthis switch
is based on the lower cumulative node costbat Path ‘b’ represents the path taken by using
opportunistic switching. In the case of opportunistic switchiffg.does not represent a guaranteed
transition relation. The list-based method cannot guarantee that a nodewlilérskipped, only
that the system will inevitably transition to some higher priority policy.

(© 2007 David C. Conner 31

Disturbance

Figure 3.10: Given the ordering from Figure 3.9, this figure shows teeuwgon for several different
initial conditions, labeledS;. The thick lines represent the integral curves induced by the local
policies. The lines labeled ‘a’ and ‘b’ represent two different flowsuitet by different policy
switching strategies. The line froify suffers a disturbance, that is captured by another policy
domain. The flow lines terminate at the overall goalGet

The ordering encoded in the tree-like transition relation can also be erexsitefinite automa-
ton. In this mode, the software governing policy execution monitors the rdun@de, which is
stored as an additional internal state variable. The inclusion tests onlytmebgdck the children
and current policy during runtime. The transitions to a new policy domain mayr@s soon as the
state enters the domain of a policy associated with a child node.

The chief benefit of the finite automaton-based execution strategy is ésteution time, be-
cause fewer inclusion tests are required. This is because the testinlicgfqmnains is limited to
the current node and its children in the finite automaton. The approachigeddf/the inclusion
tests are relatively slow, or the number of policies relatively high. If a distuce takes the state
outside the domain of both the current policy and its children, then the sy$tentdsrevert to a
search over the entire tree to preserve robustness. In this caseduhgpen required search time,
it may be prudent to pause the vehicle motion while conducting the total oraexhse

The finite automata approach does not allow opportunistic switching as reade list-based
total order. Trajectory ‘a’ flowing from statg, represents the trajectory induced by following the
actions specified by the finite automaton execution strategy. A limited form tppstic switching
can be allowed by checking nodes associated with policies that are @ddpathe current policy,
but do not represent the “best” action. The opportunistic switch camakeled for any “prepared
node” that has a lower cumulative cost assigned.

Another possible approach to allow opportunistic switching is run an “anytseatch algo-
rithm in parallel with the automaton-based execution strategy; the anytime aigocdh seek
opportunistic switches in the spare computing cycles between control sg8aie The anytime
algorithm should restart the search process when its cumulative c@ds ¢lgat of the current node.

32 (© 2007 David C. Conner

This approach combines the benefits of the finite automata-based exettaiogyswith the benefit
of opportunistic switching.

One potential downside to opportunistic switching is due to the lumped approxmdtitie
discrete transitions. While the node cost may be lower, the state may entellityedoonain in a
region that requires higher than average costs; therefore, it mayerndrto evaluate a transition
cost based on current state before allowing opportunistic switchingcdifteol designer may also
wish to guarantee transitions in a predictable manner. The choice of whetakow this limited
opportunistic switching could be made on a node-by-node basis.

The final order-based approach ipatial order. In theory, all that is needed for an order-based
approach is a function that prioritizes the set of policies whose domainigsrgayiven state and
are valid for a given navigation task. This function is callegaatial order. Consider state; in
Figure 3.10 again; statg; is contained in the domains of bofly, and®7. A partial order will
chose one over the other. Using a partial order in place of a total adaires knowledge that the
overall goal is reachable via a given policy, otherwise the policy is invalidie task. Thus, while
the partial order itself requires only knowledge of the collection of polioyndims containing the
current state, evaluating that the goal is reachable from a particularreqdires global knowledge
of the prepares graph.

One drawback to the order-based approaches are that they are limitddréssing a single
navigation task. That is, order-based approaches are best suiteavigation to a specific goal,
governed by a specific policy. Order-based approaches by thermsetvéll suited for tasks that
require visiting multiple points, or whose ultimate goal depends on informatioreigatha run
time. A higher-level executive can re-order the policies to induce clsaimgeavigation behavior,
or switch between multiple orderings if needed. Another alternative is expwitinite automata
more fully, to generate hybrid policies that satisfy the high level specificmtiotomatically.

3.5.3 Automata-based Planning

In order to plan for higher-level task specification, including those witméesl to respond to events
or respect temporal restrictions, a more flexible planning approach éede&equence-based ap-
proaches require replanning if the system needs to react to an evdrarder-based approaches
by themselves are only suitable for single tasks. To address this isseet vaark has focused on
automatically synthesizing automata from a prepares graph [61, 68].

Combining policy composition with automata synthesis leverages the strengtbstasldhe-
oretic and computer science approaches. Control theoretic appsoaifbeprovable guarantees
over local domains; unfortunately, the control design requires a loal-Bpecification of the task.
In contrast, discrete planning advances from computer science adfabtlity to specify more gen-
eral behaviors, which may react to environmental changes, andagemnverifiable solutions at the
discrete level; discrete planning lacks the continuous guarantees arstitess offered by feedback.
Synthesizing an automaton that governs the execution of the local fdedbbcies provides the
benefits of both feedback and discrete planning, while mitigating the dr&abdtese automata
synthesis tools specify behaviors in terms of linear temporal logic (LT Ljaijms on the prepares
graph nodes. LTL combines the standard Boolean logic operatorsast&ND’,'OR’, and ‘NOT’,
with temporal operators such as '"ALWAYS’ and 'NEXT’ [34].

Kress-Gaziet al. [68] have developed an automaton synthesis tool that use specifications e
coded in a subset of the full LTL that describe behaviors on the pesggiaph generated by the
work in this thesis. The approach allows both discrete inputs and discrgtet®tio be specified.
The discrete inputs are sensed by the robot, and the discrete outputsddtigrs, such as sound an
alarm. This allows the system to change high-level behavior-based oatdisvents, which allows

(© 2007 David C. Conner 33

the system to react to environmental changes in a guaranteed mannen &specification and
prepares graph, the synthesis process either extracts an automatsatisfegs the specification,
or shows that the specification is not realizable on the prepares graphsifions in the automa-
ton are governed by the transitions between policy domains and the diseeets sensed by the
robot [24]. Thus, the combination of automata and continuous feedlmatkot policies allows

high-level specifications to be satisfied by executing the continuousdekdiontrol policies. The
work in this thesis has enabled these approaches to be applied to more copgeRs.

Returning to the example of Figure 3.7, we wish to specify that the robotlgh&dower left
obstacle until an event is seen, and then goes to a particular station. Skipafir “patrol the lower
left obstacle by visiting areas ‘F’ and ‘A, until an event ‘EV’ at ‘A’ i®en.” After seeing the event,
“goto’O’, sound an and stay put.” Figure 3.11 shows an example of @meton whose execution
satisfies this behavior.

Event ‘EV’

(@)

(b)

Figure 3.11: Automata-based planning allows for the system to react todoaditions while
satisfying a given specification. Figure (a) shows portions of the patntakile satisfying the
automaton shown in (b).

34 (© 2007 David C. Conner

There are several down sides to the current automata synthesis @mso&irst, these current
approaches do not consider transition costs. Thus, a heuristic sosiated with invoking a more
complex policy is not taken into consideration by the current synthesis tSelsond, because the
automaton does not use all of the policies in the collection, some robustnéssitbahce is lost. In
Chapter 6, we present one approach to combining the automata synthesisdsitibased planning
to improve the robustness of the automaton.

3.6 Summary

This chapter has introduced two extensions to the basic sequential composiimique. First,
flow-through policies are introduced, which allow the system to encodeat&tehaviors for non-
holonomic systems. Second, the prepares definition is extended to allowyatpgiepare a set of
policies. This extension provides more flexibility in instantiating the local politiescomplicates
the discrete planning. The impact of this change on the planning is discussed

The chapter discusses the properties that are necessary for cofeguosaties. In addition to
policies that that respect the system constraints, the policy domains musinipéetely contained
in the free state space and conditionally invariant. The vector field flow edlbg the closed-loop
policy must converge to a well defined goal set in finite time. Additionally, tHeies should have
simple and efficient inclusion tests to allow the approach to be executed itimeal Any policy
with these properties can be deployed in our hybrid control framework.

The chapter discusses approaches to planning in the space of instambiitexs. Three basic
approaches are presented: sequence-based, order-bagealitamata-based. A “toy” example
highlights the differences between the approaches. Section 3.5 disthsselative strengths and
weaknesses of each approach. In general, order-based anthtatoased approaches are preferred
over the sequence-based approaches for reasons of roblastdetexibility.

3.7 Glossary
As a convenience, this section reiterates several definitions given inxtia &arlier chapters.

Definition: Policy: A policy is a mapping from state to the bounded input space; thét isY —
U. In this thesis, the termpolicy is shorthand focontinuous feedback control policy

Definition: Domain: The domain of a policy, denoted(®), is the region over which the state to
input mapping is validZ(®) C X.

Definition: Flow: The flow of the system under the influence of a given policy, denctedis
the family of integral curves induced by the closed loop dynamics of theraysteereX =
f o ®. Assigning a specific initial condition identifies a specific integral curvelowr line.
Specifying an initial state and elapsed timmdentifies a specific point in the state space. That
is, starting fromz (0) and flowing along the integral curve passing throudh) for ¢ seconds
brings the system to (t) = X (xo).

Definition: Goal Set: The goal set of a policy, denoted(®), is a subset of the domain, that is
9(®) C 2(P), whereby invoking the policy over the domain will induce motion that flows
to the goal set. Thus,

Vxo € 2(®) Jts.t. Xi(x0) € 4(CP) .

(© 2007 David C. Conner 35

Definition: Generic Policy: A generic policyis a policy defined by free parameters. The parameter
values determine the size, shape, and location of the policy domain, as wedl state-to-
input mapping of the policy.

Definition: Palette: A paletteis a collection of available generic policies.

Definition: Instantiated Policy: An instantiated policys a policy with assigned parameter values.
That is, it is a generic policy whose free parameter values have begnesstherefore, the
policy domain and mapping is determined.

Definition: Suite: A suiteis a collection of instantiated policies available for planning.

Definition: Prepares Graph: Theprepares graplencodes the prepares relationships between poli-
cies in the suite.

Definition: Deployment: A deployments a suite of policies and a defined switching strategy for
executing the policies. Given a suite of policies and the prepares grapplaitning system
generates a deployment.

36 (© 2007 David C. Conner

37

Chapter 4

Application of Policy Composition to Fully Actuated
Systems

This chapter demonstrates the approach to policy composition and plannfatiyoactuated dy-
namical systems. Since the system is an idealized point with fully actuated dynatrtias no
orientation and is free of nonholonomic constraints. For these idealizézhsysthe configuration
and workspaces are equivalent, and the equations of motion are givathbrg = v or § = u,
whereq,u € IR". We define a class of flow-through policies for these relative simple sydtems
demonstrates the principles behind the hybrid control approach outlindubipt€r 3.

The chapter begins with a discussion of a particular policy design agptbat satisfies the
requirements from Chapter 3; proofs are given in Appendix B. Dedignboth kinematic and
second order systems are presented. Throughout the chapter,|examgpgiven to illustrate be-
havior of each policy. The chapter presents several examples to deatenise variety of planning
techniques discussed in Chapter 3. This last section concludes with mraelppo automating the
deployment of policies for second order systems.

4.1 Local Control Policy Design for Fully Actuated Systems

As the basic navigation task is defined in the workspace, our approdiclesieells within the
workspace; by design, composable feedback control policies atveglaasy to define over each
cell. For simplicity, the examples in this thesis are restricted to cells that arexcpaiygons in an
IR2 workspace. While this presentation focuses on convex polygons, ths @e directly appli-
cable to convex polytopes iiR". In most of the policy designs, the extension to arbitrary convex
regions is obvious. Although beyond the scope of this thesis, many of theigees can naturally
be extended to regions that are homeomorphic to ballR’in The approach assumes that a finite
convex decomposition of the free configuration space is given. Irtipeasuch a decomposition
may be specified by a map or floor plan, or calculated automatically for low dior&ispaces [58].
The local policies defined over each cell are based on local potentigtidns, which are used
to define one of two configuration-based velocity reference vectossfmlér each cell. We then
design a control law for each system model that causes convergetieergference vector fields.
For the first type of vector field, the integral curves emanating from alliortg@oints cross the
cell boundary within a specified region; this type is termeftba-throughvector field. Integral
curves of the second type converge to a designated goal point in thieirtethe cell; this type
is termed aconvergentvector field. The remainder of this section provides details for this policy
design approach for both kinematic and second order systems.

4.1.1 Vector Field Design

The vector fields used in the policy design approach are based onrgsadie potential function.
The flow-through and convergent vector fields use two differentstygiegpotential functions. In
both cases, it is generally easier to calculate a valid potential function aveta-ball than over a
general convex polytope. For this reason, we define a mapping frooethi then-ball, and use
this to “pull back” a potential function from the ball to the polytope, and dakeLthe gradient of the
pulled back potential. Lep : P — B define a mapping from an arbitrary cet, to a unitn-ball,
B, centered at the origin. The mapping maps interiors to interiors, and boesda boundaries.
For a convex polytope, Appendix B defines the mapping based on a sediatlretraction as

_ q
PO T

whereq € P, andf (¢) : P — IR is a scaling factor based on the distance to the cell facets.
Giveny,, a potential function defined over theball, the potential function in the arbitrary cell
is given as
Y=TWop. (4.1)

By the chain rule, the potential gradiebty = DV - Dy for o = ¢ (q), which lies on the
interior of then-ball by construction. The gradienf),, will be well defined if the Jacobian of
the mappingyp, is full rank over the interior of the cell; Appendix B proves that our maggor
convex polytopes is full rank on the interior.

We now discuss the particulars of the two vector field designs using thetiabfenction map-
ping approach.

Flow-through Vector Field Design

The flow along a flow-through vector field exits a given configuratiorcepzell through a desig-
nated boundary region termed thatlet zone The remaining boundary is termed timéet zone

m

AN

E\:E\%\Wv@

Figure 4.1: Vector field for a flow-through policy.

38 (© 2007 David C. Conner

Figure 4.1 shows a typical flow-through vector field for a convex polgteghere one facet is de-
fined as the outlet zone and the remaining facets are designated inlet zones

To generate a flow-through vector field over the cell as the negatiiegitaof a potential
function, the potential functiory must be free of local minima on the cell interior. A harmonic
function, which is a solution to Laplace’s equation, provides a natural tovalefine a potential
without spurious local minima. The design approach defines a constant mingoiential along
the outlet zone; a constant maximum potential is defined along the inlet zdrike &\éolution over
an arbitrary convex polytope is not available, the solution to Laplace’atemguover ther-ball is a
computable integral equation.

On the unit disk with piecewise continuous boundary conditions the solutisiser closed
form [35, 106]. Letgy = ¢ (q) = (x4, yq) be the Cartesian coordinates of a point in disk mapped
from a point in the polygon. For the disk, the most natural representatioip@ar coordinates, so

define
po= \Jritug,

0 = atan2(ygq,xq) -
If the boundary condition is O along the outlet zone, and 1 along the inlet, zowd the outlet zone
crosses the negativeaxis, the solution to Laplace’s equation on the unit disRihis

m-a Lo psin (ag — 0)
27 v 1—pcos(a; —0)

~ Lt (psin(@0=0) (4.2)
T 1 — pcos(ag —0)

Yo (p7 9) =

whereq; denote the angle coordinates of the vertices of the outlet face. See dipBefor details.

Figure 4.2 shows an example of the mapping and potential used to generagetibrefield in
Figure 4.1. Although the potential field, over the cell resulting fromy = 73, o v no longer obeys
Laplace’s equationy is free of spurious minima as proven by

Figure 4.2: Mapping from polygon to unit disk. The contour plot on thedbtiws level sets of the
pullback~, o ¢ on the polygon; the contour plot on the right shows the correspondiegdets of
~p on the unit disk.

(© 2007 David C. Conner 39

Lemma 4.1.1 The potential functiony defined by (4.1) is free of local minima over the interior of
P provided-y, is a harmonic function, with a constant minimum potential along the outlet zathe an
a constant maximum potential along the inlet zone, and the Jacobian ofgyeimgy is full rank.

Proof: By construction;y, is a harmonic function with extrema on the boundaries of the mumit
ball; therefore, the gradief,, -, for ¢, = ¢ (¢) is non-zero on the interior of the-ball since
there are no interior critical points [35].

The Jacobian of the mappingis assumed to be full rank, meaning thafy is a full rank
matrix for allg € P; therefore,D,y = D,y - Dy # 0 for non-zeroD,, vy

SinceD,vy # 0 for all ¢ € P, we conclude that there are no critical points on the interior of
P [66]; therefore, we conclude that a local minimum does not exist on thednte

Flowing along the gradient vector field provides the correct behavinrindluces some unde-
sirable variability in speed. The gradient vector field has large magnitudssie portions of the
cell and small gradients in others. Therefore, define the unit refeneator fieIdX(q), forge P
by taking the negative normalized gradient of the potential; thus,

D" Dee" Dygv
DA [[Dgys Da|

X(q) = (4.3)
whereg, = ¢(q) € B. The flow along the unit vector field captures the desired behavior, viithou
being bound to the speed specified by the norm of the potential functidiegta The vector field
X(q) is orthogonal to the cell boundaries because the potential extrema agetladdmoundaries of
the cell by virtue of the mapping that maps boundary to boundary.

It is worth noting that Lindemann and LaValle [82, 83, 84] adapted thisagmtr by using a
different vector field generation approach over convex polytopégir Vector fields have similar
properties; the vector field derivatives are smooth almost everywheream be defined orthogonal
to the cell boundaries. As such, their vector field design approachecasda with the control laws
defined below.

Convergent Vector Field Design

The flow-through style policies are useful for driving the system frathto cell, but not for con-
verging to an overall goal. The policies developed by Rizzi [105] ap@piate for converging
to a goal, but do not have vector fields that are orthogonal to the cetidaoies. To simplify the
prepares test between policies defined over adjacent cells, and idgsmme control continuity
across cell boundaries, we consider a modification that generatea field that is orthogonal to
the cell boundaries.

First, map the goal cell to the unit baB, using the map as before, and let

qz = SD(QQ))

wheregq, is the goal configuration, anjg is the mapped goal point. L&t : B\qg — B\0 define a
diffeomorphism such that(0B) = 0B andlim, .4, ¥ (¢ (¢)) = 0.

For the unit disk, a mapping based on complex numbers serves the putpbse= ¢° = ¢(q)
be an arbitrary point in the unit disk represented in complex planeszetq’g’ = ¢(qq) be the goal

40 (© 2007 David C. Conner

=

\I’((b(qg))

Figure 4.3: Equipotential contours for a convergent potential functiond by mapping the goal
cell to a unit ball centered at the goal, and letting= 3 || o ol

point in the complex plane. Then

Z— Zg

2= () = L (4.9)

- — bl
1-24-2

wherez, is the complex conjugate af,. Clearly,z, = 0 if z = z,. Simple algebraic calculations
show that the boundary maps to the boundary. Figure 4.3 shows an exanigke mapping for a
polygonal cell in the plane.

Define the potential function, : P — IR such that

1 2
79 =5 Ivoel”,
where0 < ~, < 1. For the goal policy, define the convergent reference vector field), as

T 2
||Dq'7gH llg — QgH2 +a’

(4.5)

wherea > 0 is a scalar parameter that regulates the rate of deceleration near the lggakctor
field is orthogonal to the boundary and has decreasing magnitude negraihgoint.

4.1.2 Control Law Design

Given either flow-through or convergent reference vector fiédsa],), this section derives a family
of control laws that cause the system to converge to the vector field ihtegvas in such a way that
the properties outlined in Chapter 3 are satisfied. The section definesldaws for kinematic and
second-order dynamical systems. The second-order systems ecdrsttdanbounded and bounded
acceleration.

Kinematic Control Law

For an idealized kinematic system of the foim= «, the control inputs follow directly from the
reference vector fields with

u=X(q) = s(q) X(q) (4.6)

(© 2007 David C. Conner 41

wheres(q) € (0, Vimax] C IR and X (q) is defined in (4.3) or (4.5). The scaling functiefy) is
used to respect speed limits imposed upon the system. For ideal kinematic systemstant speed
scaling can be defined.

The control law (4.6) with vector fields (4.3) or (4.5) define a genericsctdscomposable
policies defined over convex cells. As the system is an idealized point, thigorequirement that
the domain lie within the free configuration space is trivially satisfied since fleeaze assumed to
be fully contained in the free configuration space.

The control in (4.6) induces the system trajectory to follow the integralefsunsz((q) by
definition; thus, by construction, the kinematic control policy is conditionallsitpe invariant for
both flow-through and convergent vector fields.

The policy induces finite time convergence providéd) is bounded above zero over the entire
cell; that is,s(q) > ¢ > 0, for some finitee. The flow-through vector field will cause the system
to exit the cell in finite time because the velocity component along the vector fighdvays strictly
positive , and every flow line exits the cell because there are no local miriiimas, the system
always makes finite progress along the flow line toward the exit face. dfmeegent vector fields,
the system will converge to some arbitrarily small neighborhood of the gditliia time.

The configuration-based test for inclusion into the kinematic domain is easdylated for
polytopes defined by half-space constraints. Thus, these policies/ satisf the composability
requirements given in Chapter 3.

Dynamical Control Law: Unbounded Acceleration

Given an idealized second-order dynamical system of the form
qg=u, 4.7)

subject to the velocity constraifit|| < V..., define a reference vector fieki(q) = s(q) X(q),
for some positive scalar functiofig) € (0, Vimax] C IR. In addition to enforcing the velocity limit,
s(q) is used to enforce the prepares relationship among neighboring policies.

Following Rizzi [105], define a velocity reference control policy of tbe

u=K (X(q) —q) + DgX g, (4.8)

whereK > 0 is the “velocity regulation” gain that acts to decrease the €xqy) — ¢), andD,X ¢
is a feed-forward term that enables the system to follow the changingrvisdtb

Lemma 4.1.2 In the absence of acceleration constraints, with sufficiently ldfgend initial veloc-
ities such that|q|| < | X (q)|, and¢’ X > 0 or ||| = 0, the trajectories of the closed-loop system
defined by (4.7) under the influence of (4.8), converge to the integnaés of the vector field (¢)

in a way such that the trajectory never exits the cell except by the outlet Zeurthermore, the
system speed remains less than the reference speed while the systém neriee policy domain;
thatis||¢|| < || X||. For flow-through vector fields, the system trajectory exits the cell in finite tim

See Lemma B.2.4 in Appendix B for a detailed proof. Appendix B also includgsls on calcu-
lating a lower bound foix'.

For unbounded dynamical systems, control law (4.8) with vector fields) ¢+.84.5) define
a generic class of policies defined over convex cells. The domain tastasdhree calculations,
a configuration test for inclusion in the polytope and two velocity testg|ddr < || X (¢)| and
¢"X > 0. Lemma 4.1.2 proves conditional invariance and finite time convergence.

42 (© 2007 David C. Conner

For policies defined over disjoint cells with unbounded acceleration, #gapes tests are sat-
isfied if the speed profiles at the exit zone of one cell is less than the ppefd along the inlet
zone of the next cell. Given that the reference vector fields are ati@a@t the boundaries, the
requirement thag” X > 0 is satisfied by any velocity that crosses the shared boundary. Therefo
as long as the reference speed of the “upstream” policy is less thanartedhe reference speed
of the “downstream” policy, the prepares test is satisfied. In the untealiacceleration case(q)
can be a constant less th&h,.. for all policies over a disjoint decomposition; this, the policies
satisfy the velocity bound.

Figure 4.4 shows a simulation of a variety of initial conditions for the dynamigcstesn given
in (4.7) under the influence of (4.8). The policy deployment is definedoatiered by hand to en-
sure prepares based on the adjacency relations among cells. Foridathdndition, the system
converges to the goal configuration using the hybrid control strategycetlby the underlying de-
composition into disjoint polygonal cells. The simulation, where the policies@euted based
on the total ordering, demonstrates the global control policy that is inducedr policies and de-
ployment method. The resulting trajectories induced by the feedback tpaliges are dependent
upon the underlying decomposition; that is, the shape of the integralareedetermined by the
shape of the polygon and the selected outlet zone. Different decompssitedd different trajecto-
ries; however, the overall convergence to the goal is guarantegiipdathe prepares relationships
are obeyed.

Dynamical Control Law: Bounded Acceleration

As a more realistic system, consider (4.7) with the following dynamic constraints,

Vmax ; (49)
Anax - (4.10)

4]l

<
Jull =gl <

The velocity limit is taken to be a safety limit as before. In the presence of ttedemation con-
straint, the control law in (4.8) is insufficient. In regions where the vecedd fis changing, just
tracking the vector field witly = X (¢) will violate the constraints ifiu|| = || DX ¢|| > Amax-

Figure 4.4: Simulation of a dynamical system using the velocity referendeot@olicies based
on flow-through and convergent vector fields. Light colored linesasmt integral curves of the
X (q), while the dark colored lines represent trajectories of the system fimuginitial conditions.

(© 2007 David C. Conner 43

Figure 4.5: Spectral norm of the derivative of the negative normalizedient vector field
(HDQXH) for a polygonal cell, with the cell boundary shown. The largest nomsch remain
finite due to approximation, are located near the polygon vertices.

To avoid violating the constraints, scale the reference vector field to ertbeddea of slowing

A~

down while turning and define the variable speed vector f}&{d) = s(q) X(q), where

S*

| DX+ o] e

s(q) = min

with s* a constant defined for each policy as described below,Jand 0 an arbitrary constant
that prevents divide by zero. The terHTDqXH is the spectral norrh of D, X, which increases in
relation to the change in the vector field, thereby decreasing the speeude Bi§ shows a plot of
HD‘]XH for the example polygonal cell shown in Figure 4.1. The constaig chosen so that

*

s* < min VA (HDqXH+)\)

K < ofIpx] |
\/HDQX_ TDu <] +2
which provides a conservative bound that guarantees the system tvédkoeed the acceleration
S*
bound so long as the speedjaloes not exceeﬂm.
Although this form allows the reference velocity control policy to make usthe@fdynamical
capabilities of the system, the form is still not sufficient to prevent constv@tations when; #

X(q). In the case when the initial velocity is not aligned with the vector field, thegstimmal term
of (4.8) may cause the acceleration constraint to be violated.

(4.12)

1The spectral norm of a matrix/, denoted] M [, is defined as

[M] = max ||Mx]| .

lIxll=1

44 (© 2007 David C. Conner

To prevent this, we define a switched (hybrid) control policy over eatlhthe component poli-
cies are called ‘Save’, ‘Align’, and ‘Track’, denotdes, ¢ 4, and®7 respectively. The component
policies are designed to cause the system to converge to the integra ofiX/¢;) without violat-
ing the constraints or exceeding the specified speed. This section giesemiew of each policy;
refer to Appendix B for implementation details .

The Save policy for polytope cell€g, is based on the policy presented in [105]. The policy
is designed to use the maximum available acceleration applied orthogonal twuthesloy point of
first collision based on the open loop dynamics. This is guaranteed to besgstem to rest within
the cell if there exists any policy capable of doing so [105]. The domadrkdé termed thesavable
set and corresponds to any initial condition in the state space associated wigmagll that can be
brought under control and avoid collision. Appendix B definestiiision avoidance ratipl. > 0
as the ratio of the braking distance to the collision distance. The braking cistathe distance the
system would move toward the point of imminent collision while maximally braking; ¢tiéson
distance is the distance to the closest collision point, I& 1, collision can be avoided and the
system brought safely to rest; therefore, the savable set for a polgtope,P is

P(®s,) =1{(q,q9) g€ P, ¢ <1} .

The goal set of this policy/ (¢,), is some configuration within the cél, where the system is at
rest; that s (®s,,) = {(¢,9) | ¢ € P, [[¢] = 0}.

Lemma 4.1.3 For a given convex polytope and initial velocity such thak (. < 1, the Save
policy acts to decreasg.. Therefore(. remains less than one, collision is avoided, and the system
remains in the savable sét(®s,) := {(¢,¢) | ¢ € P, (. < 1} and eventually comes to rest.

See Lemma B.3.2 in Appendix B for proof.

The Align policy, ® 4, is designed to apply maximum acceleration to the system in order to
quickly bring the velocity vector into alignment with the vector fiefdq) defined by either (4.3)
or (4.5). 4 transitions from performing a Save control action, that is applying maximwuealae
ation orthogonal to the point of boundary collision, to using a portion of Yladlable acceleration
to reduce the angle between the reference velocity and current velohitg, also decreasing the
current speed. A user defined constant; 1 < 1, determines the transition between the “saving”

and “aligning” actions. Define
_ < H— Cc)
v =max | 0, ,
"

and leto : v — [0, 1] define the transition function such that0) = 0 ando (1) = 1. The Align
policy is given by

(1—0o(v)) Pg+o(v) é T T .
max [(=o(u) estoye] ¢ X S04
Pau= A (U=o()®s=0()d_ therwise 7 (413)
B (1=o(v) @5~ (v) 4|
whereé = |s the unit vector along the velocity err@r— T is the unit direction of current
speed, an&)S denotes the input defined by the save policy. The demonstrations in thigchap

o (v) =+/v.

The Align policy is hybrid (switched) policy. At (v) = 0, that is when(. > p, the Align
policy is “saving” withu = ®g. Wheno (v) > 0 the policy transitions to aligning, but switches
behavior based on the system velocity. In the normal médeyses a transition function to combine
the Save action with acceleration along the velocity error vecttithe acceleration alongwould

(© 2007 David C. Conner 45

increase the velocity, as whgh X > ¢”'¢, then® 4 switches to apply maximum acceleration along
the negative of the current velocity. The Align policy always acts to dezte¢he system.
The domain of the Align policy over a given cell is

2(®ap) :={(q,4) | q€P, ¢ <1},

which is equivalent to the domain of the Save policy over the same cell. Thegida

Y (@ap) ={(¢;4) ¢ € P, |lgll =0},

which is also the same as for the Save policy. Since Align is equivalent tofS8age> u, the
domain is conditionally invariant by Lemma 4.1.3.

The Track control policy®, is designed to bring the system velocity into alignment with the
vector fieldX (¢) using the maximum available acceleration and then track the vector field aggord
to (4.8). The domain of the Track control policy over a given ¢@lljs

2(®rp) ={(a,d) g€ P, q" X >0, [lq] <X} -

That is, the speed is less than or equal to the reference speed, amigthation error between the
current velocity and the desired velocity is less tBartor flow-through vector fields as in (4.3), the
Track control policy guarantees that the system trajectory does nahexiell, other than by the
outlet zone, which is the goal s&£(®7,) = {(q, 4) | |ld]| < [X ()| .¢"X > 0,q € IPoutiet }-
For convergent vector field,(®r,.) = {q,, 0}, Whereg, is the goal state.

The Track control policy monotonically decreases the orientation errovele® the current
velocity and the desired velocity. The approach uses some of the avaitabletation to prevent the
orientation error from increasing as the trajectory evolves, and usesrti@nder of the available
acceleration to decrease the error. If the spdefd, is less than the desired spedc (¢)||, then
the speed scaling chosen in (4.12) guarantees that there will be atioeleeanaining to reduce
the error. In the limit, as the velocity error approaches zero, the Traakaigolicy is identical
to (4.8).

Lemma 4.1.4 Under the influence of the Track control policy, the system (4.7), witBtints
given in (4.9) and (4.10), and initial conditiofy, ¢} € Z(®1,,), converges to the integral curves
of X (q), defined in (4.11), in a way such thig|| remains less that X (¢)|| and the trajectory
never exits the cell except by the outlet zone. For flow-through veetds fithe system trajectory
exits the cell in finite time. For convergent vector fields, the system agew/&y an arbitrarily small
neighborhood of the goal in finite time.

See Lemma B.3.3 in Appendix B for proof.

The Save policy may be used by itself over a given cell provided that diém@pyed policies
cover the entire cell; that is, that other cells overlap the entire Save cdflommsn Figure 4.6.
In other words, no matter where the system comes to rest within the cell, apatiey should
capture that state. The Save policy is typically used over relatively lagjen®to capture fast
initial conditions that cannot be captured by the smaller cells that cover ther leggion. This
allows the deployment to capture more adverse initial conditions in the freesptate than possible
with a policy over a smaller configuration-cell. Since the Align policy subsunebehavior of the
Save policy for high collision avoidance ratios, the Save policy is not reéda Align policy is
deployed over the same cell.

The Align and Track policies are designed to work together. The intentidimeof\lign policy
is to bring the system into alignment with the reference vector field, while alsdérgjdhe system;

46 (© 2007 David C. Conner

Figure 4.6: The Save policy is used to capture more adverse initial conditiotiss example, the
large Save cell, denoted by the thick line, is covered by four other cells.

thus, guaranteeing that Align prepares the Track policy; thabjs, = ®7,. This is trivially
verified since the Align policy can bring the system to rest in the cell; thus, d@kie Solicy is not
needed over the same cell. For flow-through style policies defined by therield given by (4.3),
define the conditionally positive invariant switch&tbw control policy composed of Align and
Track policies a®r = {®p, ® 4 }. For the convergent policy using the vector field defined by (4.5),
define the switcheoal control policy®s = {®7, ®4}. In both Flow and Goal policies, ther
policy has highest priority. The Flow and Goal policies areta-policies

Definition: Meta-policy: A meta-policyis a control policy over a local domain that is made up of
component policies and a switching strategy among the component policies.

For planning purposes, each meta-policy is treated as a single policy inejb@es graph.

The Flow policy causes the system to exit a given cell, therefore the pai@neters must be
tuned to respect the prepares relationship with a nearby policy domairk denote the relative
priority of 5, with 1 being the highest. In order faby, , to preparedp, , the exit zone of its
component policybr, ., must be contained in the closure @{®r,), and the speed profile along
the exit zone of®7,, , must be less than or equal to the same speed profile-in This is done
by choosings*; therefore, (4.12) represents an upper bound on the speed schfiag: scaling
may need to be reduced when considering the prepares relationshig, tdlansure prepares;
is reduced from (4.12) until the speed profile along the exit zone is belewgbed profile of the
adjacent policies. The speed profile tests may consider @btheor ¢ 4, for determining the speed
profile that must be matched; considering ofly, leads to smoother paths, but is more conservative
with respect to domain.

The simulation shown in Figure 4.7 is based on a disjoint convex polygorahugosition of
the free workspace. The approach applies the switched meta-gpdlicy® 4 } to each polygon; the
policy ordering is specified manually based on the given goal locationp@ley free parameters
a>0,0<pu<1,and) > 0 are defined as constants, and applied to all policies. The free parame-
tersK > 0 ands* > 0 are manually chosen for each policy to enforce the prepares relatiomiship
adjacent policies and to enforce constraints as described in AppendihiB.is done during the
process of ordering the policies by checking the speed profile for adimgling of points along the
exit boundary, against the speed profiles evaluated for the same pdimsgolicy being prepared.

The simulation demonstrates policy switching, both among the meta-policies defi@ecklls,
and among the component policies of the individual meta-policies. The init@ditg which points
toward the upper right corner of the initial cell, is chosen to just miss the celidhary. The overall
hybrid policy activates the Align component policy first, followed by the Krpolicy of the same

(© 2007 David C. Conner a7

o 1l
L Y . T e [——
* x Save
' ~ x * Align
: : : : : * - Track

a) Course layout b) Decomposition and path c¢) Close-up of switched
behaviors.

Figure 4.7: Simulation of a constrained dynamical system showing the résubadd switching
policies. The initial velocity is to the upper right. The Align policy is activated fivdth saving
action preceding the transition to aligning action. The Track policy then takersamd drives the
system out the first cell, and through the entire region by composing thieclmataol policies.

meta-policy. In this example, the initial velocity is such tigat> 1, and the system must first
activate the “saving” action of the align control policy; this redu¢esFigure 4.7-c differentiates
between the saving actiog.(> 1) and the aligning action{ <) during execution of the Align

policy. After the system switches to the first Track component policy, teeery exits the domain
of the first meta-policy, and enters the domain of the Track component politye adjacent cell.

The induced trajectory converges to the goal as desired, while avoidingbstacles; the overall
hybrid control policy switches meta-policies as the system moves from cadlito ¢

4.2 Policy Space Planning and Control

The vector field definitions, coupled with the kinematic control law and SalignAand Track
policies for second-order systems, form a palette of generic policiespdlities are instantiated in
the system workspace by specifying a convex polytope, and the aeggsdicy parameterdy, «,
s*, u, A, andg,, as needed. This section presents examples and techniques for instapbéities
in the system state space for both the kinematic and dynamical systems defiection 4.1.2.
The examples demonstrate a variety of approaches to planning and clastigrt using the generic
policies defined above in a hybrid control framework.

4.2.1 Basic Scenarios

For the basic scenarios, we assume a bounded workspace with pdlyistacles, and that a
disjoint, finite convex decomposition of the free workspace is given. Dheation of polygons
covers the free workspace. An undirected adjacency graph, whaddes the relationship between
cells, is given.

A simple planning approach is to define a sequence of cells that must batealigs described
in Section 3.5.1. The policies are specified as needed. Given the adjagreph, deploying a
hybrid policy is as simple as planning a walk through the adjacency grapledghatcts the cells
containing the start and goal points. First, a convergent policy is deployer the cell containing
the goal. Then, neighboring cells in the walk define flow-through policiek that the outlet zones
coincide with the common boundary of neighboring cells; this is specifiedd@s¢he adjacency
relationship between neighboring cells along the adjacency graph watk.cidice of exit faces

48 (© 2007 David C. Conner

turns the undirected adjacency graph into a directed prepares grdph khalt during planning.
The policy parameters are specified as needed to enforce the velociggegldration bounds and
prepares relationships.

Figure 4.8 shows an example simulation of this technique for a kinematic systéay. #dtch-
ing is based on domain inclusion tests for the sequence of policies. Thisaappresults in a
complete navigation method for kinematic systems provided the available cellslcefeee space,
but only uses some cells in the sequence; as with all sequence-basedchyes, this approach is
less robust than order-based approaches.

In order to provide a global feedback policy that does not requirkanepg, all cells in the
disjoint covering should be used for the total order-based hybrid @opdiicy described in Sec-
tion 3.5.2. Since the cells cover the free space, the hybrid control polioniplete for kinematic
systems; the resulting global hybrid control policy brings any state within dineath of the local
policies to the overall goal. Figure 4.4 shows an example of this technigged¢ond-order systems
with unbounded acceleration. The policy parameters for each cell aseclio enforce the prepares
relationship. This method is complete for any initial condition in the domain of otfeegbolicies.

Figure 4.8: Simulation of a kinematic system. The dark line shows the path ta&kearetjion
denotes the boundary of the free space, and dotted lines show the desttiongnto convex poly-
gons.

(© 2007 David C. Conner 49

4.2.2 Reactive Automaton Based Planning

The work in this thesis enabled Kress-Gagital. [68] to generate reactive automata with policies
defined over convex polytopes for fully actuated systems. They usartbmaétic policies defined
in Section 4.1 as the foundation for hybrid control synthesis technique.lolirlevel continuous
behavior is governed by the continuous execution of the local feedimatkol policies; the high-
level behavior is governed by the discrete transitions in the finite automakiasm approach allows
the system to change behaviors based on information gathered at run time.

The low-level policies are defined based on a disjoint decomposition oflémampworkspace
into convex polygons. For each cell, a set of control policies is definel that the system can exit
the cell and enter any of the neighboring cell. The undirected adjaceaph @ssociated with the
decomposition is converted into a directed prepares graph, which enathad the transitions the
system can make between cells.

The automaton synthesis algorithm takes as input the possible transitiongeéricdte pre-
pares graph, the allowable discrete inputs sensed by the robot, anddvedpeecification given in
LTL. The automata synthesis extracts an automaton that specifies the pdticyiswbased on the
discrete sensor inputs; this allows the user to specify behaviors at deviglhwith the low-level
motion induced by the policy composition governed by the automaton.

Figure 4.9 shows an example scenario where a robot is tasked with pateotiimgery listening
for crying babies. When crying is detected, a discrete sensor signasitin@maton, and the hybrid
control policy induces the robot to search for an adult to alert. This simuolagmonstrates the
how the local feedback control policies can be combined with automatonesysittools to gener-
ate reactive hybrid control policies. During execution, the automatoniti@rsare governed by
changes to discrete inputs based on sensor measurements and the gerttizmsitions between
policy domains. The hybrid control policy induces continuous behavibichvchanges based on
the sensed inputs, that satisfies the high-level specification. The congifihesis is enabled by
the composable policies and discrete transition relationship encoded byetiergs graph.

ool —ﬁ 5 6 J ol 4*3 6

9 , ,

il = 3

il x 10 = _ N~]

ol) 8 ol 4 8

T m @ W W w —m m wm @ e
a) No crying babies b) Crying baby in cell 4, adult in cell 8

Figure 4.9: Nursery simulation using automaton that encodes “checkyfimgdpabies in cells 2
and 4, when crying detected, search for and alert adult in cells 6, 8.’ dcow-level behavior
governed by kinematic policies described in Section 4.1. Simulation and figieesourtesy of
Hadas Kress-Gazit and George J. Pappas, GRASP Lab, UnivefrBignasylvania.

50 (© 2007 David C. Conner

4.2.3 Global Policy Design: The “Dynamical P” Problem

As a demonstration of the power and flexibility of the hybrid control apgrdac second order
systems, this section presents what we term the “dynamical P” problem. eHgl@ shows a
collection of cells that cover a workspace, which is not simply connectbd. gbal is designated
in the lower portion of the loop inside region ‘a’; a decision about which teatyavel around the
loop to get to the goal must be made. For kinematic systems, this choice is typicalé/baaed
on path length from the initial configuration to the goal. For constrainedrdicad systems, the
choice must take into consideration the initial velocity of the system. The hybntial approach
taken in this thesis allows the decision to be made at execution time based on whighimp a
predetermined deployment contains the current state.
This section describes a simulation that assumes an idealized dynamicaldcbot; with

¢, u € IR?, subject to both velocity and acceleration constraints in the form of (4®§4m0). The

»

L@

d)

= e

—
A

.

9) h))

Figure 4.10: Configuration space cells used to define local control pofimi¢dynamical P” sim-
ulation.

(© 2007 David C. Conner 51

policy deployment,
U ={%q,, ®r, 5, Pr,, ®r., Pr,, ®r,, s, Ps, }

is generated by hand. The first subscript refers to the ‘Goal’, ‘Fland ‘Save’ hybrid policies
defined in Section 4.1.2; the second subscript corresponds to thewratifig-cells shown in Fig-
ure 4.10. The policies are executed according to the ordered’listith @, being the highest
priority. At each time step, the list is searched from highest to lowest prionty a domain that
contains the initial state is found as described in Section 3.5.2. This example alevdemon-
stration of switching behavior in simulation, while remaining simple enough to préseletail;
additional deployments and configuration-cells are possible.

The deployment uses one Goal poligh¢(,) and six Flow policies®r,, 5., ®r,, Pr,, Pr,,
and®pg,) to provide a disjoint cover of the free configuration space. The Flawips are config-
ured to prepare the adjacent policy of higher priority. The ‘Goal’ anoMfpolicies use ‘Align’ and
‘Track’ component policies; therefore, there are actually fourteehdcotaponent policies deployed
for this group. Together, these policies induce a piecewise potentia-basegation function for
any state within the domains of the Goal or Flow policies.

To capture faster initial velocities, the two Save policies are deployed in thpe ¢arridor. The
Save policy®g, , whose cell is shown in Figure 4.10, covers the corridor from the bottahettop
of the obstacle forming the “P”; thu$s, = J{®q,, Pr,, Pr.}. Any state savable by this policy
prepares the Flow or Goal policies in a way that causes the system to entewtr half of the
loop from the left. The second Save polidys,, encompasses the entire large corridor on the left
side; thus®g, > |J {<I>Ga, Or,Pr, <I>Fg}. Anything savable by, that comes to rest i -, will
enter the lower loop from the right by traveling above the obstacle.

Figure 4.11 shows three initial conditions that demonstrate the change widredga response
to changes in the initial conditions. The first case, which starts slowly stragglactivates> 5, and
®¢,. The second case, which starts to the right, activétgs ., and®,, in that order. The
final case, which starts to the left with a high initial velocity, activabes, ¢, Qpy, Pr,, Ppy,
and®,, in that order. The switching is automatic based on the state being within the dofmain
the highest priority control policy as specified by the deployment.

52 (© 2007 David C. Conner

Figure 4.11: Deployment of local policies induces a change in the routa taken three different
initial conditions. The spacing of the dots and circles corresponds taehtféntervals of elapsed
time.

4.2.4 Automated Policy Instantiation and Deployment

This subsection explores an approach to automating the policy deploymesgdond-order sys-
tems. In the above examples, the policy parameters are specified by harfdriceehe required
prepares relationship among policies. In this section, the selection of cdllspaaification of pol-

icy parameter values is automated. The simulations of the resulting deployrogittepadditional

demonstrations of the flexibility of planning in the space of control policies.

We assume a cell decomposition that contains a rich collection of polygonge-daes and
small ones, disjoint and overlapping — is given. Overlapping cells allowe¢hersl-order policy
domains to cover a large fraction of the free state space. The collectiefiofarms the foundation
of the automated instantiation process, which automatically chooses a celhfearnllection, and
then specifies the policy parameters.

In this case, automatic instantiation means specifying the goal set, that is \abethdnd free
parameters K, «, s*, u, and\ — over a chosen cell. The policy ordering is determining during
instantiation to guarantee the global behavior. This demonstration focasksilding a hybrid
global control policy that addresses a single navigation task using a td& of policies defined
over convex polygons.

Several choices are made to simplify the deployment strategy. First, polieiésstantiated
one at a time. Second, the automated deployment algorithm only uses eachazllthat is,
only one facet is chosen as an exit for flow-through policies. Thirdatgerithm does not test

(© 2007 David C. Conner 53

that a given policy increases the size of the domain of the hybrid policyetetiy previously
deployed policies. Therefore, it is possible that existing policies dwyinate[88] the current
policy, meaning that the previously instantiated policy domains may completelyicdinégpolicy
domain being considered. Although retaining dominated policies leads to pdlicieare never
invoked, the overall correctness of the hybrid policy remains since theeigriority policy is
always used. As a simpler version, a cell is discarded if the cell is completalgined within
another cell.

To reduce the computational expense, the extended prepares testdé eoaducted. Recall,
that the extended prepares tests is based on a policy goal set beingedirtiaghe union of several
policy domains Instead, the automated approach uses the simpler pregaties hetween two
policies. One exception is that Save policies are deployed over largesagficonfiguration space
in order to capture extreme initial velocities and enlarge the fraction of fadée space in the overall
domain. The decomposition used to deploy flow policies covers all of thefreiguration space;
therefore, the Save policy trivially prepares the other policies since thkestmte is at rest. With
these caveats, Algorithm 1 addresses the automated deployment probléra $pecific policies
developed in this section in a way that integrates the planning and policy sp&oifi stages.

The algorithm begins by choosing a cell from the collection of convex paolgibeells to serve as
the goal cell (line 2). The cellis chosen according to some heuristic frosetbells that contain the
designated goal. For this demonstration, the heuristic is calculated by triingwdach polygon
by including the goal point as a vertex. The polygon with the largest ratminfmum triangle
area @Anin) and maximum triangle areal(,,x) weighted by the total polygon ared) is chosen;
thatish = Ap min. - Thijs results in choosing a relatively large polygon, while avoiding elomgate
ones; see Flgure "4.12. The Goal policy parameters are defined to Haisfystem constraints. The
deployment (line 4) and list of unprepared policies (line 5) are initialized tudeconly the Goal
policy. The goal cell is used, so it is removed from the list of available cltis 6); that is, it is
taken out of the collection of convex polygonal cells available for instantiatio

Figure 4.12: The heuristic for evaluating goal polygons weights the polggea by the area ratio of
smallest and largest triangles in a triangulation that includes the goal poithisloase, the policy
on the left is preferred.

54 (© 2007 David C. Conner

Algorithm 1: Automated Deployment for Fully Actuated Systems
Input: Finite collection of convex polygonal cells = {Pi,..., Py}

that covers the free configuration space, and a goal configuration
Output: Ordered collection of instantiated control policies

U = {®1,..., 200}
() LetK' = {P;, e K | 49 € Pi}
(2) ChoseP, € K’ according to a heuristic
3) Parameterize the goal poli®; = {®r, <I>A}g based orP,, g4, and con-
straints
4 Setl/' = {®} (the deployment)
(5) SetV = {®} (list of unprepared policies)
(6) Setk = K\P, (don't reuse cells for simplicity)
(7) whileV # ()

(8) Chooseb,. € V based on a heuristic (e.g., highest priority or minimum
distance tay,)

(9) LetV = V\®. (remove policy from list of unprepared)

(10) LetP. be the cell associated with,

(12) Letk’ = {Pi € K | there is a face of P; contained in P, the closure of 77.3}

(12) LetKC = K\K' (don't reuse cells for simplicity)

(13) VP; € K’ set parameter values fé; = {®p, @4}, such thatd; = @,

(14) LetV' = {®; | P; € K'and ®; = .}

(15) Order)’ based on some heuris{ifor example average cost to execute

or distance tog,)
(16) U ={U',V'i,ie. add ordered’ to the end ot/’
(17) V = {V,V'} (update list of unprepared policies)
(18) endwhile
(19)
(20) Deploy ‘Save’ policies over any unused cells
(21) while £ # 0
(22) Choose large®?; € K
(23) LetC = KC\P;
(24) Deploy Save policy®s), based orP;
(25) U ={U'.(0s),}
(26) endwhile

The bulk of the algorithm deploys policies to prepare previously deploydidigs, building
a total order list in the process. The algorithm is greedy in the sense tredstaells as soon as
an facet is completely contained in the domain of the previously deployed litis possible
that delaying the use of a particular cell would allow a larger domain. Theapes test uses the
more restrictive test that a cell facet be completely contained in the cellrela$uhe policy it is
preparing (line 11). The deployment occurs in “layers” as each deglpglicy is evaluated to see
what unused cells can prepare the deployed policy. Each layer isedrflare 15) before the new
policies are added to the deployment (lines 16 and 17). An alternativensciveuld be to swap
lines 15 and 17, only addt. toZ/’ in line 16 (instead ol”), and reorded instead of jusd”’ in the
new line 17.

The finalwhile loop in Algorithm 1 is used to deploy individual Save policies to capture larger
regions of the free state space for these second-order systems thassitdgwith the cells that

(© 2007 David C. Conner 55

prepare other cells. Implicit in this coding is the assumption that the cells alsbwaigh previously
deployed Track policies cover the free configuration space.

To fully demonstrate automated deployment, Algorithm 1 is implemented in simulation. The
simulation is applied to the environment shown in Figure 4.13. A convex decsitigowith 603
cells is given. The large number of cells includes overlapping cells and muliigl@rd cover-
ings of the free configuration space. Given specification of an anpityeal point, the algorithm
automatically selects the individual cells and calculates the required parardatérg policy de-
ployment.

The simulation results of the global switched control policy are shown in Eigut3. Four
different initial conditions, starting from two separate configurations,samulated. The simula-
tion demonstrates the policy-induced decision making that is inherent in the polposition
approach.

This chapter developed a policy design approach for fully actuatednsystgth input con-
straints. We design policies for both flow-through and convergent gneds convex polytopes;
both kinematic and second-order systems are considered. These psait$ég the composability
requirements, enabling the policies to be deployed in our hybrid controlefreork. These com-
posable policies enable a variety of discrete planning techniques; this deatesshe flexibility
of the policy composition approach. The examples range from simple segtbased planning, to
automatic synthesis of reactive automata based on high-level behayiec#ication. The compo-
sition of the local policies induces different behaviors based on the intidiions and the specific
policy domains, without requiring re-planning. The drawback to theseypadésigns is that because
the systems are idealized, the results are not directly transferable to nmsteagmed systems.

Figure 4.13: Automated deployment simulation for four separate initial condition

56 (© 2007 David C. Conner

57

Chapter 5

Application to Single-bodied Wheeled Mobile Robots

This chapter extends our approach to integrating planning and contiogte-9odied wheeled mo-
bile robots. While the results from Chapter 4 show the promise of our hybritta approach, the
numerous constraints found in real mobile robots render the technigukslyoactuated systems
inapplicable. This chapter presents the design of composable policieppiattia single-bodied
wheeled mobile robots while satisfying the composability requirements of Chapfenis opens
up the many symbolic reasoning techniques described in earlier chaptersdaaalistic systems
with multiple interacting constraints.

This chapter begins with a discussion of some of the system constraintseanddeling frame-
work used to address them. Our basic policy design approach is pregetie chapter's second
section. The third section presents two specific policy designs that follobatie approach and ad-
dress the constraints for three wheeled mobile robot models. The clsdptath section discusses
techniques that are used to verify that the policy designs satisfy the cabifitysequirements. The
chapter’s fifth section discusses approaches to instantiating the geakcieq including a semi-
automated approach. The sixth section discusses techniques fortgengra prepares graph. The
chapter concludes with a discussion of an approach to quantifying thveetampleteness of the
collection of policies.

5.1 System Constraints and Modeling Framework

Mobile robots introduce many complications that are not addressed byltbiegtor fully actuated
idealized systems. This chapter focuses on policy designs that addesstthese complications:
body size/shape, nonholonomic constraints induced by wheels, andcimpattaints. This section
discusses the implications of these constraints, and provides an oveftf@naoodeling framework
used in our control design. Appendix A provides a detailed overviewefrdmmework, including
formal definitions and derivations for the specific systems used in the this the

5.1.1 Pose Space Constraints

The robot is a single convex body that moves in the planar workspaeelo¢ation of every point

in the robot can be expressed relative to a single reference frameedttacthe robot body. The
robotpose s locally represented by = (z, y, 8), which specifies the positior:(y) and orientation

(0 € (—m,n]) of this body-fixed frame relative to the global fixed reference frameeémtbrkspace;

see Figure 5.1. The pose spakes the space of all possible poses. In differential mechanics terms,
the pose evolves on theF (2) manifold; see Appendix A for details.

b

Figure 5.1: The robgposeis the position and orientation of the robot body, denated (z, y, 9),
relative to a global workspace fram#). The configurationof the robot isq = {g,r} wherer
represents internal variables specifying such things as steering anglegeel rotations.

The obstacles in the environment constrain the set of admissible robat. fesea pose to be
collision free, the body must not intersect any obstacles in the environiretn® (¢) C ¥V denote
the workspace area occupied by the robot at gds&tated formally, the requirement that the robot
not intersect any obstacles at a given a pose is, for all obstdt|gs{) O; = 0. The set of collision
free poses, dfree pose spacés denotedjs,.., where

gfree: {g€g|R(9)ﬂUOz:®} Cg-

The free pose space is the region that the robot must navigate througgictoits goal; that is, the
control policy must induce pose velocities that keep the system within th@ése space during
travel.

5.1.2 Nonholonomic Constraints

The robot is driven by wheels in contact with the ground; thus, the systesubject to nonholo-
nomic constraints induced by rolling without slipping or sliding sideways|1, &2 94]. For
example, the systems in this thesis cannot move instantaneously sideways teldtie forward
facing pose. Many systems are also subject to steering bounds thaeregguoslation in order to
rotate. These constraints limit the pose velocities to a sub-manifold of the &dl famgent space.
The control policy design must induce pose velocities that respect tHelwmmomic constraints,
otherwise the control is not realizable on a given system.

To fully specify the position and motion of the robot, the drive wheel systenst beuspecified
with variables in addition to the pose. These variables, denoterd laye termedshapé vari-
ables [96]. Examples of shape variables include drive wheel rotatiglesiand steering wheel
positions for Ackermann steered cars. Therefore, the robot coafign is fully specified by
q = {g,r}; thatis, the robot pose plus any necessary shape variablBsnote the shape space as
R. The shape variables do not directly impact the robot pose, and daus¢ intersection with the
workspace obstacles. Thus, the robot free configuration sp&g.is= Gee X R.

!Note, thatR (g) = R (q), whereR (¢q) was defined in Chapter 3. Only the pose portion of configuration impacts the
setR.

2In differential mechanicsshapevariables are also callebasevariables and th@osevariables are termefiber
variables; see Appendix A for details.

58 (© 2007 David C. Conner

This thesis is concerned with so calledrely kinematic systemshere there are sufficient
independent nonholonomic constraints to constrain the equations of motioriirgi arder, or
purely-kinematic, relationship between shape velocities and pose velotiti@hpt is, there exists
amappingA (¢) : T, R — 7,G derived from the nonholonomic constraints such that A (¢) 7.

For purely kinematic systems, the control of pose velocities is induced viehdpesvariable
velocities through the mapping (¢). This thesis focuses on systems that directly control the shape
velocities, that i = u for u € U a bounded input set; therefore, the pose velocitieg ared (q) u.

The mappingA (¢) is nonlinear, which renders the control problem of choosing inputs tergésn
a given pose velocity also nonlinear.

Example: Differential-drive robot

As an example, consider the case of a standard differential drive sbloavn in Figure 5.2. The
robot body pose ig = (z,y,). The robot is driven by two wheels in contact with the ground; de-
note the rotation of each wheel about its axle as {11, v} for left and right wheels respectively.
The vehicle is prevented from sliding sideways relative to its instantaneasngge and each drive
wheel is assumed to roll without slipping. These three independent lamdmic constraints are
represented as

sinf —cosf 0 0 0

cosf sinf —c —R 0 |-¢q=0,

cosf sinf c 0 -—-R

A

[

Figure 5.2: Differential drive robot with two drive whee{s);, ¥z} as shape variables and body
pose given by = (x,y, #). The full configuration iy = (z,v, 0, ¢, ¥R).

(© 2007 David C. Conner 59

whereg = [& ¢ 6 or q/}R]T, R is the drive wheel radius, aritt is the vehicletrack®. The
derived mapping between shape velocities; [z/}L, @z}R]T, and pose velocitieg, = A (¢) 7, is

%cos@ %cos@
A(q)= |gsin® Zsing| . (5.1)

_R R

2c 2¢

5.1.3 Input Bounds

The shape variables and their derivatives, that is the shape velocitighertzounded based on
safety or mechanical limitations. For example, the electric motors commonly useigl¢artbbile
robots have a top speed based on the motor characteristics and availtdge .vBpeed limits may
also be imposed to provide safe operation in given environment. Theséd kmits may be direct
limits to the shape velocities, or limits on the pose velocities, which are in turn mapEGpe
velocity limits. In either case, the limits are ultimately applied to the control inputs. &Shelpcity
bounds map directly to input bounds for systems with w.

Other limits may be imposed on the shape positions; for example, steering vaisé& s may
be mechanically limited. These constraints limit the shape space directly, aptbtieahe set of
admissible shape velocities along the shape space boundary. That isapieevelocities must not
be outward pointing along the shape space boundary. Together, thesteaints act to limit the
allowable inputs available to the system at a given configuration.

The constraints interact to complicate the control problem. Since the indusedvelocities
must keep the system in the free pose space, the pose velocities arainedsatong the free pose
space boundaries. These constrained pose velocities constrain tifealietvable shape veloci-
ties via the mapping! (¢); for kinematic systems, these constrain the set of admissible inputs. In
defining the mapped pose velocity constraints, the policy must consider bs¢hvelocities and
“important” shape variables that modif§ (¢). For some system models, such as the differential-
drive system highlighted abovd,(¢) only depends on the pose; other systems, such as automobiles,
haveA (¢) mappings that depend on both pose and shape variables. In thesedatempmse veloc-
ity constraints may induce constraints on the shape variables, which in turiinavite constraints
on the shape velocities. That is, the shape velocities will be limited to those thaitdead to
violations of the shape variables. Input bounds limit the set of achieveldeities, determined by

the mappingA (q).

5.2 Basic Design Approach

In the context of this framework, navigation refers to motion in the free gpaee, while control

is effected in the shape space. The mapping), which is derived from the nonholonomic con-
straints, connects the navigation and control problems. This sectiompgesbasic policy design
approach that makes use of tHelq) mapping to build policies that satisfy the composability re-
quirements set forth in Chapter 3. The policies specify inputs from thedmalimput set that induce

3In mobile robotics, the distance between drive wheels is sometimesatferas thevheelbaseln automotive terms
thetrackis the distance between drive wheels andvitheelbasés the distance between the front and back wheels [16].
This thesis considers multiple robot models, including automobiles; therefee standard industrial terms are used.

60 (© 2007 David C. Conner

a pose velocitieg = A (q) u such that the system avoids obstacles and reaches a designated local
goal.

Our approach defines the policies over collision free regions of passesp/Ne redefine the
termcell to specify a region of free pose space that is used to define a local.pdlieycells are
designed such that under the influence of an associated control gbkcgystem is induced to
move from any pose in the cell to a relatively smaller subset of the cell desigas the goal set.
In this way, the cell defines a “funnel” that takes a relatively large retpamrelatively small goal
set. Figure 5.3 shows a conceptual example of a cell. The policy desigifispshape velocities
that induce the desired convergence to a designated goal set withirllthesabe basic navigation
problem addressed in this thesis is completely specified in terms of motion in éhpdse space,
specific trajectories in the shape space are not a primary conceriggutaliey satisfy the necessary
constraints.

The cells, denoted C Gy, are restricted to compact, connected, full dimensional subsets of
IR? without holes. That is, the cells are defined in the IdBdlchart of the pose space. The cell
goal set is a subset of the closure of the cell; for flow-through policiegtal set is on the cell
boundary. We assume the cell boundary is composed of parameteritacesuatches defined by
differentiable functions, such that an outward pointing normal is well ddfedimost everywhere.
The surface patches define a continuous cover of the cell bounvdargfer to this boundary surface
as a piece-wise parameterized surface.

In defining the local cells, there are several competing objectives. Riestlesire cells with
simple representations that are easy to parameterize. Additionally, we delsréhat have simple
tests for inclusion so that the system can determine when an associatednpajidye safely used.
On the other hand, for a given policy goal set, we want the cell to capsineuch of the free pose
space as possible given the system constraints. That is, we want thegptdibe “expressive.”
Given the system constraints, there is a trade-off between the size afahsej and the size of the
cell. Larger goal sets tend to allow larger cells; however, the goal setscshe small enough to be
contained in another cell. This interplay between the goal sets and cells &f treebasic design
challenges of defining composable policies. The cells should also admblépslicy designs

.

NS

Figure 5.3: A schematic representation of a cell defined in the three dimahbiaty pose space.
In this case, the goal set is the two-dimensional set of points at the smaif émeicell.

(© 2007 David C. Conner 61

over the entire pose space region. This thesis looks at a set of relaiughe cell designs, and
demonstrates what can be accomplished with them.

The local policy is defined over the cell; that is, the cell defines the paseespomain of the
local policy. Thus, the composability properties that hold for the policy domaist also hold
for the cell. That is, the cell must be contained in the free pose spacenasicbe conditionally
invariant under the influence of a local policy that brings any pose inghéacits goal set in finite
time. Furthermore, the cell should admit a simple inclusion test. These requisearethe policy
domains provide limits on the freedom to define cells that result in valid policies.

Recall from Chapter 3 that the velocities on the domain boundary must peiatdrto induce
conditional invariance, except at the goal set for flow-through palicidus, for all poseg in the
cell boundary, there must exist an achievable pose velgcitych thain (g)Tg < 0, wheren (g)
is the outward pointing normal. Using the mappiAdq), whereq = {g,r}, this pose velocity
constraint is mapped to a half space constraint on the shape velocitieis tHat (¢) 7 < 0. If
there does not exist such a vaftdn the bounded shape tangent space, then the cell is not valid.
For kinematic systems, whefe= v with v € U/ a bounded space,” A (¢)u < 0 provides an
additional input constraint along the cell boundary.

Arbitrary cell shapes are not allowed; a cell can only be valid, if theigt®a valid input that
keeps the velocity inward pointing on the cell boundary. ket n(g) - A(¢) andw™ be the
negative half space it defined byw and the origin of/; this is shown in Figure 5.4. Along the
cell boundary, any. € w™ (U renders the cell conditionally invariant. Becausedheonstraint is
a function of both the pose along the boundary and the boundary normddptindary constraint
thatw™ (U # 0 limits the size and shape of the pose space cell.

The constraints described previously provide absolute limits on the sizehape sf a given
cell. Additional limitations will be imposed by the specific policy designs. Giveariqular cell,
the aim of control policy design is to specify a mapping from any pose in thécan input in the
bounded input space that induces the desired behavior. That iselva sgappingb : =; — U/ such
that the induced flow enters the designated cell goal set in finite time whileysagisfonditional

u2

U1

Figure 5.4: The conditional invariance requirements for kinematic systemséncbnstraints on
the input set. The cell size and shape is limited suchahgt i/ # 0 forw = n(g) - A(q) for all
g in the cell boundary.

62 (© 2007 David C. Conner

invariance. Defining a valid policy requires verifying that the policy desiging applied over a
particular cell satisfies the composability requirements of Chapter 3. Inwthrels, a given policy
design may fail to take full advantage of the capabilities of the system atigbfuimit the size and
shape of the cell.

For the fully actuated idealized policies described in Chapter 4, the policgrdess accom-
plished by defining a reference vector field over the cell such that ttterveeld flow entered the
goal set. The mapping from configuration to input was based on theenefevector at a given
configuration. The vector field serves to encode the desired behaspthe entire cell. For non-
holonomic systems, the nonlinear relationship between inputs and pose vsloates it difficult
to define a reference vector field over a given pose space cell.

Our approach for purely kinematic systems is to define a set of input eartstfor each pose
in the cell. By carefully defining the constraints, any input chosen frontémstrained input set
U induces a behavior that satisfies the requirements of Chapter 3. We tat@gigaint definition
approach for two reasons. First, defining a continuous vector fielgs#tisfies the nonholonomic
constraints is difficult due to the complex cell shapes and nonlinear constrdt is easier to
define a set of pose velocity constraints(q) provides a convenient mapping between pose velocity
constraints and input constraints. For example, consider the boundasyraiatsn’ A (¢) u <
0. As the inputs are not subject to the differential constraints, the selectianvalid input is
generally easier than defining the specific pose velocity. Second, nusta@ostrained optimization
techniques allow additional information to be incorporated into the choice ohtat input from
the valid set. For example, we can construct a cost function that penajzesinput changes but
rewards moving fast and maximizing the distance from the defined constrHinits, while any
u € w™ (U is valid for a giverw constraint, constrained optimization allows us to select the “best”
input according to some cost function.

5.3 Generic Policy Designs

This section presents two generic policy design approaches that saisfgritposability require-
ments for purely kinematic systems. This section gives an overview of tlefispgesigns; the
following section discusses how the composability requirements are verified.

Both generic policy designs defined below are flow-through style policdisetl over pose
space cells. As stated above, each Eglis a subset ofR?3, which represents a local chart of the
pose space wit{z, y, 0}-coordinate axes. We choose to define generic cells relative to a local
coordinate frame attached to the center of the cell’s designated goal get,letenote the goal set
center in the world frame anflz’, 4/, ¢’} denote the coordinate axes of the local reference frame.
See Figure 5.5 for details.

Given a generic cell specified in the local coordinate frame, the cell isnitisted in the pose
space by specifying the location @f,.; and the orientation of the local frame relative to the world
frame. We restrict the policy goal set to lie within a plane orthogonal to thé&dviiame xy-plane;
thus the locab’-axis is parallel to the world-axis. We restrict the positive’-axis, which corre-
sponds to the goal set normal, to be aligned with the robot direction of taawke configuration
corresponding t@oal. Thus, the locak’-axis is normal to the cell goal set, and outward pointing
with respect to the cell boundary; we refer to the orientation ofitk@xis as theyoal set heading
Although these choices constrain the policy freedom, they make specifygrfgeh parameter val-
ues more tractable by limiting the choices. Bg}. € (—m, | specify the orientation of the/-axis,
and letggoal = {Zgoal, Ygoal, Ogoal + Ab} € IR®. For forward motion, the’-axis is aligned with the

(© 2007 David C. Conner 63

a) Goal set projected onto plane b) Goal set plane.

Figure 5.5: Definition of goal set. a) projection ontg-plane with some reference velocity vectors
shown, b) goal set plane demonstrating restriction imposed by continuigysiktsmaller arrows
denote valid velocities that cross the goal set. Points ‘aa’ and ‘bb’ anersin both figures for
reference.

robot heading, and\é = 0. For reverse motion, the/-axis is opposite the robot heading, therefore
Af = £

The required invariance properties for flow-through policies lead to gpriakelines when defin-
ing a valid goal set. The goal set defined as described above amsearsine segment when
projected onto they-plane. Consider Figure 5.5-a; the system crosses the goal set aseéddiy
the smaller arrows. For a flow through policy, the orientation of the bodycitgleector must be
within £7 of the goal set heading. For systems whose instantaneous forwaradiodity is along
the axis defining the body orientation, the restrictiofl is [fgoa — § + Af, goa + 5 + AB]. ON
the goal set boundary, the instantaneous pose velocity cannot beetissi the goal set boundary;
that is, any velocity component not orthogonal to the goal set must be gomitethe goal set.
For the systems considered in this thesis, the instantaneous pose velocihgith@dody heading,
which puts a restriction on the velocities at the endpoints, as shown in Fighse S'he system
constraints and continuity restrictions will impose additional constraints ondaksgt; these are
conceptually represented by the arcs that bound the goal set in Figube $he exact shape de-
pends on the specific policy design. In general, the goal set is “tiltedivel® thexy-plane.

The remainder of this subsection describes the definition of the pose sgllceelative to the
local cell frame. That is, a parameterizationpof= {2/, 1/, 0’} is given. Given the goal set center
Jeoal, ANY pointp represented in the local generic cell frame can be mapped to agoeiot by

€08 Ugoal —SiNOgoa1 0 Tgoal
g (p) = |sin egoal COs agoal Ofp+ Ygoal . (52)
0 0 1 Ogoal + A0

Although similar to a homogeneous transform, the non-standard transfomn{&t) is required
due to the placement of the cell withiR®. The cell is both positioned and rotated a1, Afis
used to position the cell along tifeaxis, but does not affect the orientation of the cell.

64 (© 2007 David C. Conner

A key feature of these policies is that a valid policy may be relocated to a nalypgmt within
the free pose space without impacting the conditional invariance, finite tinveig®nce, or simple
inclusion test properties; the safety of the policy with respect to collision beugerified a the new
reference point. The proofs of these properties are based on sinhpldatians that are invariant
under rigid body transformation within the pose space. This means thatluese properties are
verified for a given set of policy parameters, the policy may be relocated-bpecifying the goal
set center. As a policy cell is relocated, the requirement that the cell lie withifree pose space
must be verified. For the simple inclusion tests, special consideration muakére as the cell
orientation dimension does not wrap aroundtat and can be place at arbitragy,., poses; for
these cells in this thesis, it is normally sufficient to tests inclusion basegd-en(x,y, 0 + 2nm)
wheren € {—1,0, 1}.

We now present a high level overview of two families of generic policiese palicies have
free parameters that govern the specific size and shape of the polariesjitl parameter values,
the policies are composable within our hybrid control framework.

5.3.1 ‘PF Policy Design

The first family of generic policies is based on workspace path segmdrits) ere used to define a
parameterized cell in pose space. The path segment is lifted to a curvesisgse by considering
the orientation of the path tangent as the desired system orientation, withahsegcenter at one
end of the pose space curve. A ‘tube’ is defined around the pose spaee to define the cell
boundary. Figure 5.6 shows an example of this cell.

The policy design is based on a variable structure control approachhdgmwing, which
gives the policy its ‘PF’ name [4]. The PF policy defines a “sliding” conswiface within the cell
boundary tube. For a given robot model, the policy defines a contatégiy that causes the system
to steer toward the sliding surface, then along the sliding surface towa g@®#e space curve and
the goal set center. For kinematic systems, the sliding surface definéscayweonstraint at each
pose; the constraint is then mapped to a constraint on the input space,asienple optimization
is used to chose a valid input.

In addition to the goal set center, the policy free parameters include the ofithle tube, the
curvature of the workspace path, arc length of the path segment, apel shthe sliding surface.
Valid values of the free parameters, that is values that induce composdiaeidr, are limited by
the input constraints and specific robot system model. Thus, the conilggsalguirements must
be verified for a given set of parameter values

a) Workspace path with local frame defined b) Cell boundary and “giidinntrol surface.

Figure 5.6: Control policy based on path following control law given in [4]

(© 2007 David C. Conner 65

See Appendix D for details about the functions used to define the celldaoymand sliding
surface, derivations to show correctness, and techniques to vatiff?Fhpolicies satisfy the three
composability requirements.

5.3.2 *'SQ’ Policy Design

The second family of policies are defined using level sets of superigdadctions, which gives the
policy its ‘SQ’ name. Two functions are used: the first expands from tia¢ get along the central
axis, and the second caps the cell. Figure 5.7 shows a schematic régtieseRigure 5.9-a shows
a 3D representation of a cell with specific parameter values. The cellaanalty funnel shaped.
Free parameters govern the size of the goal set ellipsoid, overall lepgihdnd expansion along
the central axis defined by thg¢,) function, where] € [0, (5/] andy € [—7, | are parameters
that specify a given point on the cell boundary surface.

Given the basic cell definition, we define two different control strateffiesnducing conver-
gence to the goal. The first is the variable structure control approadriled in Section 5.3.1.
The second, which works for systems whelré;) does not depend on shape variables, is based on
a family of super quadric functions that define level sets as shown ind-{g8r The normaly (g),
of the level set passing through the pgsie used to define a constraint(g) = n (g)” A(g) on the
input space. Using any € w (g)’1 (U as the control action drives the system towards the inner
level sets, and then towards the goal. The size and shape of the cell is liyiteel tonstraint that
n(g9)" A(q) U # 0 for all level sets.

See Appendix E for details about the policies, discussion of corre¢taedsechniques used to
verify the composability requirements.

p(¢,7)

Cur

Figure 5.7: Schematic of curves used to define super quadric based cell.

66 (© 2007 David C. Conner

Figure 5.8: Schematic of super quadric level sets used in control policy.

5.4 Policy Validation

For a policy to be valid, the specific policy design and specific parametezs/diat define cell size
and shape must satisfy the composability requirements from Chapter 3sTthat cell that defines
the policy domain in pose space must be contained in the free pose spaqgeolitiy domain must
be conditionally invariant under the influence of a local policy that bringsgose in the cell to
its goal set in finite time; that is, the induced pose velocities cannot causgdteensto exit the
cell except via the goal set, and the shape variable velocities canrs# izl system to exceed
the shape variable constraints. Furthermore, the policy domain should aupiie $nclusion tests;
this requires that the cell has simple inclusion tests with respect to a local Jd¢ee methods
used to validate the policy/cell combination necessarily vary with the speciiicymtesign, cell
definition, and the system model under consideration. This section psoaideverview of some
of the approaches used to validate specific policy instances.

First, the cell must be completely contained in the free pose space so thatlisi®n free. One
can imagine constructing the free pose space boundary given the dizsbape of the robot body
and known work space obstacles, and then checking for intersectimedre the free pose space
boundary and the poses within a given cell. We avoid this complexity by ingathi@problem, and
verifying that the cells are completely contained in the free pose spacd bakeon workspace
measurements; that is, the free pose space is never explicitly define®.(Eg}t denote the union
of points in workspace occupied by the robot body for all poses withiivengcell Z;; that is
R(Z;) = Uyez, R(g). In other words 12 (Z;) is the swept volume of? (g) over allg € =;. If
R (Z;) does not intersect any obstacles, then the cell is free of collision; thheisell is contained

in the free pose spac® (Z;) can be determined by expanding the cell boundary to account for the

body shape, and mapping the expanded surface to the workspadgpaedix C for details and
a proof or correctness. Figure 5.9 shows an example cell, its expaiwsiarpérticular robot body
size and shape, and its mapping into the workspace. The size and stipeelf is limited by the
obstacles in the environment.

This thesis develops a tractable approach to expanding the cell and testicalision given
a mesh representation of the cell boundary surface. The approastansnalytic mapping from
a cell boundary point to the corresponding point on the expanded mafidary, and a mixture of

(© 2007 David C. Conner 67

@) (b) (©

Figure 5.9: Testing that cell is contained in the free pose space. a) cakplnded cell that
accounts for body shape, c) projection into workspacde &S;). The projection of the cell boundary
is shown as the darker inner surface.

exact tests and approximate tests to ensure the safety of a given celltiigiog overly conserva-
tive. First, the cell surface is represented with a surface mesh. Seeacid vertex in the mesh is
expanded using the point-by-point analytic mapping. This results in a méisé expanded cell sur-
face, which is then projected to the workspace. For a triangular surfash, the projection results
in a collection of overlapping workspace triangles. If a workspace tiéaveytex is contained in an
obstacle then collision occurs, and the cell is unsafe. This is an exadbdsst] on the point-wise
analytic mapping. If an obstacle vertex (assuming a polygonal worksmasside a workspace
triangle, then collision may occur, and we assume that the cell is not withingag@se space. If
all the workspace triangles and obstacle vertexes are collision freethierll may be free. If the

workspace obstacles are expanded by the maximum error of the exip@ibmesh approximation,
then the approach guarantees the safety of the cell. The point-by-pailytia mapping, proof of

correctness, and details about the approach to collision testing araetecseAppendix C.

A policy defined over the free space cell is safe provided the cell is alsdittonally positive
invariant under the influence of the policy. Conditional invariance reguinat velocities along the
cell boundary, excluding the goal set, are inward pointing. For a gdaicy specification, this
property must be verified.

As an example, consider a kinematic differential-drive system suchgthat A (¢) u. The
mappingA (¢) does not depend on shape variables; so we will use the shorthand motégip=

A(q). Letu = @z,) (9) denote the chosen input of a control policy defined over a specific cell

with a specific input set/. Assume the cell boundary is defined by a surface parameterizéd by
and~. The conditional invariance requirement is that over the entire cell ynthat is for all
and-,

n (g (¢)" Alg (¢M) = (9(6,7) <0. (5.3)
For each poiny ({,~) € 0=; define
L(Cy) =nN" A7) = (7)), (5.4)

wherel/ is the bounded input set associated with this policy. The more negativeltleeofd., the
better the input respects the constraint given in (5.3). Although nonritteafunctionL (¢, v) is
piecewise smooth and generally “well-behaved” for the mappinig). For a valid cell, condition
(5.3) must hold over the entire boundary; therefdré(,~) < 0 for all ¢ and~. In other words,
at each point on the cell boundary, the system must be able to generalecayvthat is inward

68 (© 2007 David C. Conner

pointing with respect to the cell boundary. In the worst case over theedsdiindary, a valid cell
satisfies the constraint
nglaxL (¢,v) <0. (5.5)
Y

If condition (5.5) is satisfied for a given cell, under a given control plizen the cell is condition-
ally invariant.

Figure 5.10 shows a typicdl (¢,) surface for the cell shown in Figure 5.9-a. This surface is
constructed by sampling thig, v} parameter space, and calculatihg The ridges shown in the
figure are due to switching behavior in the minimization that occurs when theagtidary normal
is parallel to thery-plane; that is the component in thedirection is zero. As thé component
of the boundary normal crosses zero, the valué afepends only on the instantaneous heading.
On either size of the horizontal normal, theeomponent changes sign; thus, the rate of turn that
minimizesL flips between positive and negative steering, which induces the ridgeshoMs, this
policy results in a conditionally invariant domain.

While this example is for a specific control policy, similar approaches existhi® control
policies defined in this thesis. Appendices D and E discuss the validationaabms taken for
the specific policy designs and systems used in this thesis. The evaluatitiofisrare piecewise
continuous, which lends itself to sample based and numeric optimization tecbrfidgquelidation.
The sample based tests are exact on a point by point basis; therefmarse sampling is used
for preliminary tests, and a fine resolution sampling used for final validaticm given policy
specification.

5.5 Policy Instantiation

The generic policies must be instantiated in the free pose space befooathleg used in the hybrid
control framework. This involves specifying the free parameters arityvey that the composabil-
ity requirements are satisfied. The policies must then be tested for the ggep&tionship with
other policies in order to construct the prepares graph used by thetdigdanning. In Chapter 4,
this process was automated given a decomposition of the free workspagmiytopes; the fully
actuated idealized point systems makes this possible. In this chapter, theadar body shape

([0,
I

!

Figure 5.10: Constraint surface for(¢,) from (5.4).

(© 2007 David C. Conner 69

means that a simple decomposition is not available, and the constrained dypagcicsie the use
of many simple cell shapes.

Our approach for nonholonomic systems is to define the policies over cells poe space.
The cells must be placed so that they are completely contained within the fseespace. The
placements must also guarantee that the policy domains are sufficiently mteoted via the pre-
pares relationship to address a given navigation problem.

The approach taken in this chapter is to define some policy domains first, emattempt to
fill the free pose space by incrementally adding policies that capture mewesfrace and prepare
the existing policies. This section describes two approaches to addréssicfallenge: a manual
approach and a semi-automated approach.

The most basic approach is to instantiate each policy individually by spegifitues for its
free parameters. Given a palette of generic policies, a specific geédg is chosen. A reference
point, typically the goal set center, is then assigned. From there, thenptes that determine
the goal set size, and cell size and shape are specified. This appsdaased on trial and error.
Given a set of parameter values, the validity of the policy must be verifidis ifivolves testing
that the cell is contained in the free pose space and demonstrating thanthgoel invariance
constraints are satisfied on the cell boundary. Policy parameter vakiésesr modified on an as
needed basis. Using Matl®hcode developed for this thesis, the policy validation steps generally
took several minutes per policy and parameter set combination. Thus, thianmiarror based
manual approach can be time consuming.

By taking advantage of the invariance of the policies under rigid bodyfoanation, we de-
velop a semi-automated approach to policy instantiation. This is possible keunaliiple copies of
a policy can be instantiated once the conditional invariance and coneerperperties are satisfied;
only collision must be checked with each transformation.

First, using the manual approach described above, we instantiate a coll&gialicies relative
to a common reference pose.

Definition: Cache of Policies:A collection of policies instantiated relative to a common reference
pose.

The policy cache should contain policies with a variety of domain sizes anéshhat have been
validated for conditional invariance and finite time convergence. The pelicidefined relative to
a common reference pose that is not necessarily the goal set cerités. Way, policies within the
cache can prepare one another. The policies within the cache are inethittithe free pose space
by rigidly transforming them relative to the reference pose placed ata ffige pose. Figure 5.11-a
shows a schematic example of a cache.

Policies from the cache are placed in the pose space relative to spefefenee points. The
goal set center of each policy is transformed based on the relativéanawagion between the cache
reference point and the pose space reference point. Collision testimgtbe expanded cell ap-
proach, which is automated, is used to discard cells that intersect anlebstae cache should
contain a variety of cell sizes to cover small regions when the refereneeaisan obstacle, and
large regions when the reference point is away from an obstacle. eFiglit shows a schematic
representation of the instantiation process. Given a cache of valid pdicgea collection of ref-
erence poses, the instantiation within the free pose space is automateestitiag collection of
instantiated policies is the suite of policies, first introduced in Chapter 3. diti@wl to policies
deployed from the cache, policies may be added to the suite manually.

By carefully defining the policy domains in the cache, and deploying the pelaiea regular
grid of pose space reference points, the policies can be made to systdynpite@are one another.
In this way, the instantiated policies are guaranteed to satisfy the prepkatsrship in predictable

70 (© 2007 David C. Conner

(@) (b)

(©) (d)

Figure 5.11: a) Cache of policies - a collection of policies instantiated relaiizecommon ref-
erence pose. b) The cache of policies are instantiated a given refguese. Policy domains that
collide with obstacles are discarded, as shown by the thin light gray lineslicig? are instantiated
at three reference poses by copying and transforming the cacheigotiy Suite of policies - the
collection of collision free policies instantiated in the pose space of the rabdtid final example,
eight local reference poses are used.

manner. The reference pose grid spacing is chosen relative to thd fimedmmains in the cache.
Finer reference pose grid spacings lead to better pose space alecagise the cells can be placed
closer to obstacles without colliding; this results in more policies with significaltowerlap.
The overlapping cells can result in more options for the planning systenebtheroviding more
flexibility; however, the extra flexibility comes with an increased computationaddn both in the
instantiation phase as well as the planning phase.

5.6 Prepares Graph Generation

In order to do discrete planning with the suite of policies, our hybrid comgproach requires the
prepares graph that encodes the discrete transitions between policindo@&en a policy suite,

(© 2007 David C. Conner 71

this section discusses approaches to defining the prepares graplettrattable. The approaches
can be automated, making them suitable for use with our semi-automated instamielioigue.

For kinematic systems, the prepares test is based on verifying that thguratibn goal set
of one policy is contained in the domains of other policies. The policies deiim#iis thesis for
purely kinematic systems are defined across the range of shape vaghi@s;\thus, the prepares
test only needs to consider the pose variables. Stated differently, gioaeyin a cell, the policy
is defined for any value of the shape variables. This allows the prefestefor the policies in this
thesis to be evaluated by comparing the cell goal set of one policy with thieareidaries of other
policies. A policy prepares another policy if the cell goal set in poseesjgacompletely contained
in the other policy’s cell; the extended prepares relationship holds fortioa of cells.

The prepares tests for purely kinematic systems requires that everyrpihiaigoal set lie within
a cell or set of cells. As the cells are defined to be compact connectiedsabat are isomorphic
to a ball, and the boundaries of the cells are piecewise smooth functionsathizecverified by
comparing the distances from goal set points to the boundary of other Ehitssection describes
three sample based approaches, and then discusses their extensioa sxowoate numerical ap-
proaches. For the policies defined in this thesis, the first two approareseliable, so the third
approach, which is more thorough, was not implemented. This sectionificstsdes the approach
for testing one cell goal against a single cell; the extension of the tectniqusets of cells is
discussed later.

Consider testing two cells to verify whethér preparesp;. All of the prepares tests begin by
verifying thatggoalj lies within the domain ofb;; this is a simple inclusion test thggoalj € g,
whereZ; is the cell associated with policy;. If this single point test fails, thes?; cannot prepare
®;. Next, we sample the goal set boundary based on the parameterizatian sgetific policy
under consideration. The piecewise smooth functions allow an errodiioure determined, which
can be used to guide the sampling resolution and determine a safety threshibld $econd and
third test procedures.

Given the sampling of goal set boundary points, we now discuss the ilhweedures used to
verify the prepares relationship between two policies. The first tesedtoe simply verifies that all
the sample points on the boundarydfs goal set are included if;. For the relatively simple cell
shapes considered in this thesis, this test proved reliable for reascaafybde counts. The second
prepares test casts each boundary péjptinto a local frame ofg; along the central axis. An
example of this test is shown in Figure 5.12. Given the local coordinateg, ofhe corresponding
point ond=; is found. Provided the distance from the central axiégois less than the distance
from the central axis to the corresponding pointia), the point/ g, is in the cell=;. The benefit of
this second test is that it provides a distance from the goal set boutedidugy cell boundary, which
can allow the approach to define a safety margin. This second test canmseical techniques to
find the minimum distance from goal set boundary to the other cell boundiary approach does
not guard against an oddly shaped cell whose boundary bends ig thataremoves a portion of
the goal set, without intersecting the goal set boundary; while unlikelystiistcoming motivates
the third approach.

The third procedure checks to see if each point along aﬁ@&gk), from the goal set center
9goal, 1O the sample boundary sample poigi. lies in the cell of®;, as shown in Figure 5.13.
Letif, = |7 (“gx)|| be the distance form the goal set center to the goal set boundary pbiat. T
approach determines the point of intersection of the ray a;Rj(Hgk) with the boundary ofp;; let
the distance of this point frorpgoalj be*/;. In the case of multiple intersections, the minimum
distance is chosen. Sin@goalj is contained in®;, the intersection will exist, so that;, is well
defined. If/¢;, < ¢ then every point on the ray is ;. If miny, (“4;, — 7¢;) > €, wheree > 0

72 (© 2007 David C. Conner

\;‘:\(\\\‘\\\‘2‘:‘:“‘\}\}\}\%@&\
‘{" \)\&‘"\:‘ :

|
%8

0
5

-

"\

a) Schematic view of prepares test b) Prepares test in 3D c) Prepares testin 3D - close up

Figure 5.12: Prepares test for policy deployment. In the three-dimendiguees, the goal set of
®; and the corresponding points on the surfacépére traced in lighter colors.

\ ggoalj y’

Figure 5.13: Schematic of the third prepares test, whgrés thek™ point on the goal set boundary
of policy ®;, 7 =7 g, — Ygoal and’¢;, = ||7|. The intersection of the ray alomgvith the boundary
of ®; occurs a distancé;, from Ygoal, -

is the safety threshold, thek; = ;. This test depends on a tractable method of find the boundary
intersection with”, which necessarily depends on the specific cell designs. Given thedotien
point, and piecewise smooth boundary surfaces, the test lends itself toicairpeocedures to find

the minimum distance between the goal set boundaryda)d The specific numerical details are
beyond the scope of this thesis.

If the goal set is not contained in a single policy, a restricted version aéxtended prepares
test @; = {®;}) is used to test for inclusion in a set of policy domains. The restriction, which
simplifies implementation, requires that each policy in the union contains theejaarger. Then,
as long as each goal set boundary sample point passes a prepafes deteast one cell in the
union, we assume that; = {®;}, where{®;} denotes a set of policies. When two consecutive
sample points switch between policy domains that contain them, the sampling cefineel to
guarantee that no gaps are found.

These tests for inclusion can be automated so that the prepares grabé ganerated for a
given collection of cells. To limit the algorithm complexity, we chose to limit the nunadbeells
considered in the union to three. The automated algorithm first definesodmessible prepared

(© 2007 David C. Conner 73

policies for a particular policgp; as the set of policies containing the goal set centdr,ofFor this
subset of policies, the sampled boundary points are tested for inclusionpdicy that contains
all boundary points according to one the three test procedures isrpdeps the given policy.
Next, subsets of two policies that contain all boundary points are colldtteds, the given policy
prepares the union of these policies. Finally, subsets where three paiciesn all goal points
are collected. By considering all policies in the suite in turn, the prepasgshgs automatically
generated. During this process a heuristic cost can be assigned tprepahes graph edge based
on some defined cost metric.

The computation cost and accuracy are related to the number of samplegloingshe goal
boundary. During manual deployment, a coarse sampling is used to guidéitigparameter spec-
ifications*. For final prepares graph generation, a fine sampling along the bguisdased. With
several hundred policies, the generation of the prepares graphhtakessusing code developed in
Matlab™ . Suites of tens of thousands of policies sometimes took days to generateepaeess
graph; the time varied depending on the relative interconnectednessretthligéng prepares graph.
Thus, both the manual instantiation and prepares graph generatiosaepsebstantial time and
computational investments. This upfront cost is justified based on the ptpfiekibility demon-
strated in the next chapter.

5.7 Relative Completeness Quantification

As described above, this approach is not complete; that is, it does adrgee that the free pose
space is covered. There is a trade-off between relative completemgdsbeanumber of policies
used for planning. Increasing the number of policies increases botlpti@ticomputational costs
and the cost of planning and replanning. A relatively small number of singdleigs is unlikely
to provide good coverage of a complicated workspace. The questiorattsas, “how does one
guantify the relative completeness in order to evaluate one deploymerarmthier?” As a measure
of relative completeness, we define twerage fraction

Definition: Coverage Fraction: The fraction of free pose space covered by the suite of policies.

While the definition is straight forward, calculating this in closed form is inttaetasing current
techniques, if not impossible in general. In this section we demonstrateemiedfsample-based
method for estimating the coverage fraction, and discuss opportunitiesifay thhe coverage frac-
tion to guide policy instantiation.

The sample-based approach is based on Monte Carlo methods [91Lyifipdregular sampling
grid is defined over thiR? representation of pose space. The sampling grid spacing is choseh base
the relative size of the features in the world and the robot. A randomly olszsaple point is taken
from the grid and the robot is tested for collision at that pose. In orderdw aver sampling one
region, we define points on a regular grid so that each sample can bedrac# only used once.
If the robot is free of collision at the sample pose, then that pose is in tas@ce. The sampling
continues until a user-determined number of free pose samples is colld¢tsdprocess gives a
sampling of the free pose space. From the collection of free pose saraegller number is
randomly sampled and tested for inclusion in the domain of any cell in the suiteliofgs. The
coverage fraction is then estimated as

_ #included free poses
~ total # sampled free posés

f

“During manual instantiation, the three-dimensional cells can also be vistiatizprovide visual confirmation of the
prepares relationship and guide parameter selection.

74 (© 2007 David C. Conner

)i~ 3 b) o ~ =«

Figure 5.14: Plots showing the sampled points for a narrow range of di@rgashown by the
robot. The dots represent free poses; lighter green represers ipotuded in at least one policy
and darker red represents poses that are not captured by at meadbmain. The policies are
deployed on a regular 0.30 meter grid spacing in this example.

Figure 5.14 shows an example of the sampling by projecting the poses fowraands of orien-
tation into the workspace. Most of the missed poses appear along thedrpwidhe free pose
space.

For the results described in this subsection, a specific policy cache isyddpim a regular
reference pose grid using the semi-automated approach describediamSeg. The reference grid
points are placed at regular intervalg(in) as shown in Figure 5.15. The experiments consider a
square grid ifzy) and astaggeredyrid. The grids are referred by their nominal spaciaAgalong

B SR S SR S S A RSN

e S S

i U U N N o U G U U Ul U
-] | Fa -2k

a) Nominal policy reference grigk, y) spacing b) Staggered policy reference gfid, y) spacing

Figure 5.15: Figures show the nominal and staggered reference gaithgp used for policy instan-
tiation. Thesdx, y) grid points are crossed with a regular spacing along@ttienension to make a
three-dimensional reference grid in pose space.

(© 2007 David C. Conner 75

a single row or column. The regular workspace grids are crossed waha@isntations to give a
regular reference pose grid. For the figures and tables below, thigondta 45’ is used to denote
orientations of{ —3T, -2 —Z 0,7 7 371 otherwise, the policy reference grids are placed at
{—g, 0,3, 77}. During the semi-automated deployment, each policy from the cache is instdntiate
at a reference pose; the policy is added to the suite if and only if the polioflisian free.

Figure 5.16 shows examples of the coverage fraction estimates for two stippeticies de-
ployed in the environment shown in Figure 5.14. The samples are chasemfvariety of sampling
grid spacings. The coarsest uses a spacing of 0.1 meters inahey dimensions, and degrees
along thed dimension; the finest sampling grid uses .001 metersladdgree. As Figure 5.16
shows, the coverage fraction estimate converges as the number of sampeses for a variety
of grid spacings. The figures show the mean estimates from five diffsaenplings taken from
the collection of free pose samples taken at a given sampling resolutionerfidrebars indicate
wide variance for fewer samples, but show negligible variance fori@ample counts. Table 5.1
shows the standard deviations obtained for the sampling grid of 0.0025 raate°ree reso-
lution sampling for ten different suites. A reasonable estimate, with less tfepeynent standard
deviation over the coverage fraction range, is consistently obtainedbad@d samples.

Our expectations, which are confirmed by the experiments shown in Figufgisthat increas-
ing the number of deployed policies tends to increase the coverage fratitime experiment, a
specific cache of policies is defined and then instantiated on regulagmeéegrids defined in the
environment. Figure 5.17 shows the results for eight grid spacings. ftenfimber in the Fig-
ure 5.17 legend refers to the nominal reference grid spacifg,in); an ‘S’ is used to denote the
staggered grid as shown in Figure 5.15-b. As the reference grid gpdeareases, more policies
are deployed and the coverage fraction increases as expected.

The increase in number of policies may be prohibitive in terms of computatiosabecause
many of the additional cells overlap others, without increasing the cogdragtion. This suggests

Cy ~0.61 C; ~0.81
1 T T 1 T
—6— 0.0025/1 spacing
0.95¢ 0.005/2 spacing |1
—#— 0.01/2.5 spacing
0.9r —#— (0.025/2.5 spacing]
—+— 0.05/2.5 spacing
< 0.85f —©— 0.1/5 spacing c
o o
& 08 & 08
II Lt Ty 1
& 0.75 g o7 *
g : o
g ¢ o7
o Y Qo Y
o o
- 0.65 —6— 0.0025/1 spacing|{
0.005/2 spacing
0.6 —#— 0.01/2.5 spacing |
—»— 0.025/2.5 spacing
0.55 ——+— 0.05/2.5 spacing |
—6— 0.1/5 spacing
5
for 107 10° 10° 10° (1 107 10° 10° 10°
Sampled Free Points Sampled Free Points
a) 0.30m reference grid spacing b) 0.15m & 45 reference grid spacing

Figure 5.16: Coverage fraction estimate converges as the number of saone goes up. The
plots show a variety of pose space sampling grid resolutions for each pefexence grid spac-
ing; the legend refers to thery) /6 sampling grid spacings in meters and degrees respectively.
The graphs represent the mean of five sample-based estimates; esrardoghown. The results
converge to a reasonable estimate after 5,000 samples.

76 (© 2007 David C. Conner

Table 5.1: Coverage fraction and standard deviations for various pglidg and sample counts
using 0.0025 meter and 2 degree sampling resolution.
o>@Sample Count

Deployment Reference Grid C/ 50 500 5000 | 50000
0.30 0.6054| 0.0627| 0.0313| 0.0064| 0.0024
0.30 & 45 0.6359| 0.0466| 0.0322| 0.0075| 0.0021
0.30S 0.7354| 0.0650| 0.0217| 0.0033| 0.0027
0.30S & 45 0.7540| 0.0637| 0.0201| 0.0041| 0.0023
0.15 0.7976| 0.0700| 0.0211| 0.0037| 0.0017
0.15& 45 0.8146| 0.0599| 0.0216| 0.0035| 0.0012
0.15S 0.8540| 0.0480| 0.0154| 0.0054| 0.0011
0.15S & 45 0.8669| 0.0456| 0.0150| 0.0057| 0.0010
0.075 0.8831| 0.0388| 0.0130| 0.0047| 0.0012
0.075 & 45 0.8952| 0.0335| 0.0137| 0.0051| 0.0010
l,
0.95¢
0.9 x .
<
s .
g 085/ o
i x ¢ 030
o 08 o O 030&45
§ + 0.30S
g o o o1
x 0.15&45
0.7 O 0.15S
0.15S&45
0.0
0851 2 0.0;2&45
° ‘ ‘ ‘ ‘ I:I‘ 0.07'?5 ‘
0 0.5 1 1.5 2 25 3 3.5

Policy countx10°

Figure 5.17: Plot showing estimated coverage fraction for a number ofypmlid spacings that
result in varying numbers of deployed policies.

using the coverage fraction to guide incremental deployment strategies thlegoolicy to be added

is chosen as one that captures the most un-included poses from the.sdimplgreedy strategy

preferentially chooses those policies that overlap the least. This appiraaeases the computa-
tional burden up front in order to lower the computational burden at pigriime. By decreasing

the overlap and number of policies, this greedy approach may have thendd consequence of
reducing the flexibility of the suite during discrete planning. This is a trad¢éhaff must be eval-

uated by the system designer on a case by case basis depending omttiegpsgenarios under
consideration and the computational resources available.

These tests were conducted for a single cache of policies. To increasevédrage fractions, one
could also consider adjustments to the cache of policies. By including slighglgrland slightly
smaller policies, the policies can capture domains that are otherwise missediven policy grid.
By considering policy dominance, that is policies that completely contain the idero& other
policies in the cache, and only instantiating the policy that contains the lamgest ominate)
policy, the total number of instantiated policies can be reduced.

(© 2007 David C. Conner 77

The real test of the coverage fraction is relative to a specific navigatmvigm; that is, how
“global” is the hybrid control policy. Thus far, this discussion has fecusn evaluating the cov-
erage fraction for a given suite of policies. For a specific navigatiohlpne, some policies in the
suite may be discarded if they do not prepare other policies that reacbaheldpe coverage frac-
tion should be evaluated for tlikeploymentthat is the suite of policies and the switching strategy,
for the navigation problems being considered. Providing more policies, with mterconnections
in the prepares graph, increases the likelihood that a policy will be inclindide deployment, at a
cost of increased computation up front and during planning.

5.8 Conclusion

This chapter provides an overview of our approach to extending padioposition techniques to
single-bodied wheeled mobile robots. After discussing the modeling frarkeappurely kine-
matic system, the chapter presents a policy design approach based orgdzdils in the free pose
space, and feedback control policies over those cells. Two spedifiti€a of generic policies
that follow this approach are introduced. The chapter discussed teesnigr validating specific
instances of the generic policies, and verifying that the policies satisfyaimpasability require-
ments of Chapter 3. The cells have explicit boundaries in the pose spaich,allows the safety of
the policies to be guaranteed provided the cells are complete contained ir¢hmbe space, and
the associated control policy renders the cell conditionally invariant. fiapter introduces a novel
approach to verifying that the cell are collision free based purely okspaice measurements, in
a way that does not require the construction of the free pose spanddrias. The policies have
simple inclusion tests by design.

Approaches to policy instantiation and prepares graph generation atessiésl. The chapter
introduces a semi-automated approach to policy instantiation based on a coltdqgtidlicies in a
cache. The cache policies are specified manually, and validated fatiooatinvariance and finite
time convergence. The semi-automated approach takes policies from teeazatplaces the cells
at specific reference poses via a rigid body transformation. The imearigroperties of the policies
guarantee that the transformed policies retain the conditional invariaddanda time convergence
properties. The transformed policies are tested for collision using thenégdacell approach in-
troduced in this chapter; only collision free policies are retained in the palitg.sGiven the suite
policies, this chapter introduced three procedures for determining thanasrelationship among
policies in the suite. The policy instantiation and prepares graph generatiogsges incur an up-
front cost; the upfront cost is offset by the planning flexibility of this hgltcontrol approach, which
is demonstrated in the next chapter.

Finally, this chapter introduced a sample based method for evaluating theaeainpleteness
of the suite of of policies. The results demonstrate that the sample basedelpjgonverges to a
reasonable estimate of the coverage fraction; that is, the portion of dsmegpace covered by the
instantiated policies.

Given these policies and validation tools, it is feasible to deploy composaidepdor wheeled
mobile robots in a way that enables symbolic planning on these constrairnethsyd he next chap-
ter explores various planning technigues in simulation and experiment omobéde robots using
policy suites defined using these techniques.

78 (© 2007 David C. Conner

79

Chapter 6

Demonstrations of Coupled Planning and Control

This chapter demonstrates the coupled planning and control approadVesated in this thesis;
experiments and simulations of several different robot models validatepiireaches discussed
in Chapter 3. The experiments are designed to demonstrate the seqasededrder-based, and
automata-based planning approaches using the policies developed iteiChaghe approach is
applied to real systems that exhibit the imperfections and model uncertairggloforld applica-
tions, operating in confined environments. The results demonstrate thatrtipesition of simple
policies allows more complex behaviors to emerge; unlike other behaviedtzgsproaches [19],
these emergent behaviors are guaranteed to induced the desire glbbaion. The experiments
also exhibit the robustness of feedback control to model uncertaintgishd¢bances. In spite of
the overall success, several issues arise during the testing. Wesdikess issues, how they im-
pact the relative strengths and weaknesses of the different appgand present our methods of
addressing the issues.

The chapter is divided into sections based on the planning methods used antbagiration.
First, order-based approaches to building a global policy are distublege the task is navigation
to an overall goal using an ordering of the instantiated policies. Experinusintg both SQ and
PF policy types, and two different robot models are presented. Nex$etieence-based approach
that uses model checking to satisfy temporal constraints is discussedquarnae of policies is
generated such that the composition of the policies in sequence movesdhérobgh a series of
tasks. Simulations of one particular robot model are given, and the limitatioins sequence-based
approach on a real robot are discussed. Finally, we present exaogie automata synthesis to
build formally correct reactive hybrid control policies. Results from bretd robots and simulations
are given. The robots demonstrate navigation tasks that change badédterent sensed inputs;
that is, the robots react to changes in their environment.

6.1 Order-based Planning

The first tests follow the conventional sequential composition approacisihg an ordering of the
suite of policies to address a single navigation and control task. Hereti¢inepd is to build a near
global control policy using the instantiated local policies. The basic task iavigate through an
environment without collision to a designated goal; the goal is chosen tespand to the goal
set of a policy in the suite. This section presents scenarios for two diffeo®ot/environment
combinations; several initial conditions are shown for each environment.

Each scenario is set up as follows. First, we assume the environment isrfalisn. The control
policies are instantiated using the generic policies defined in Chapter 5; Watiathe developed
for this thesis is used to test requirements for composable policies. The pdiaeverified for

the particular robot model and input set; collision is tested based on thespamd# model. We
then determine the prepares graph using code that implements the ideaseatiscu€hapter 5.
Heuristic costs are assigned to each edge based on a cost functiot ielie size and complexity
of the given policy transition. The deployments are verified in simulation pratinig on the robot.
Afterwards, a list of policies with their assigned parameter values is writtertext @onfiguration
file; another configuration file defines the control input bounds useth@particular robot. The
policies are then transferred to the robot for execution.

The robot control is governed by a softwapeecutivgorogram that coordinates the pose estima-
tion, policy switching, and motor control output. The executive, develdpethis thesis, is written
in C++. During execution, the control inputs specified by the local polieysant to a low-level
motor controller. The policy control input is specified as a forward velauity rate of turn, which is
mapped to desired wheel velocities. A low-level motor controller attempts to medritle wheels
according to the velocity command by specifying voltages to the motor. As thisotds never
perfect, and is subject to delay, error, and second-order dynatimécactual robot is an imperfect
match to the kinematic model assumed in the policy design. Appendix F discuesaarticulars
and limitations of the particular robot models used in these experiments in more detail.

During the robot startup, the robot software executive first readstilte of policies from the
configuration file, along with the specified control input bounds apjatgfor the given robot. The
goal, which is assigned according to the particular navigation task, is sgkasfia particular policy.
The executive then uses D*-lite [81] to order the policies according todbigaed heuristic costs;
the entire prepares graph is ordered.

The output of this D*-lite implementation is a switching strategy, which we reptesigh a
finite automaton. Each node is assigned a cumulative cost to the goal aeftaqu action. The
automaton is tree-like; that is, there are no cycles. During the experimemmlibies are executed
using the finite automaton model to provide faster execution time due to fewesimtltests, as
discussed in Chapter 3. The ordering is also stored as a totally-orderefthicgles according to the
cumulative costs assigned to each node in the automaton. This list is foergedter perturbations.
After D*-lite is finished with the initial ordering, the robot executive seaxthe ordered list until
a node whose policy that contains the initial pose is found. If the seailshidadentify a valid
policy, that is an ordered node with finite cost, then execution terminates.

The robot executive program executes the hybrid controller basétedinite automaton. The
current automaton node is stored during execution. The executivptadbe current local pose
estimate, and checks if the current pose estimate is contained in the domaimpolitheassociated
with a child node of the current node That is, the policy associated with the child node of the
current node in the automaton. If the child policy domain contains the cyscea estimate, then
the child node becomes the current node and the associated policy igeeke€therwise, the
current local pose is tested against the current policy domain, and trentpolicy is executed
if its domain still contains the current local pose estimate. If a disturbance takecurrent pose
estimate outside the current domain, a zero velocity command is sent to the mutalleg and
the executive begins a total order search using the ordered list. Ifanehskils to identify a node
associated with a valid local policy, then execution terminates; otherwiseettig ientified node
becomes the current node, and the policy execution continues. Thisaappallows the robot to
recover from unexpected perturbations, while preserving the sgdabd tocal search in the finite
automaton representation.

!Recall from Chapter 3 that we make a distinction between the nodes ofttiraaton used to represent the switching
strategy, and the policies associated with each node.

80 (© 2007 David C. Conner

6.1.1 ‘Deminer’ Robot Experiments

The first experiments use the ‘Deminer’ robot shown in Figure 6.1. Tihetiie a standard differential-
drive robot with a convex, roughly elliptical body shape. The contrputs are taken from one of
four bounded input set&{;, as shown in Figure 6.2; each local policy is associated with one partic-
ular input set. See Appendix F for details about the robot size, shagé¢ha input sets.

For these experiments, a total of 288 basic SQ type policies described endigE are manu-
ally instantiated using the techniques described in Chapter 5. During thetiastanprocess, each
set of policy parameter values is checked for validity for the particulartisgiassigned to the pol-
icy; that is, the composability properties are verified and the parametes\adijiessted as necessary.
Figure 6.3 shows the domains for seven policies. It is worth noting that theaharstantiation
process is time consuming, especially around sharp turns which requiretd tnel and error to
get policies that appropriately prepare one another. The extendearesedefinition is used most
often near the corners of obstacles to allow larger policy domains to beyagepl&or this suite of
policies, fifteen separate policies prepare 31 different unions of pdbayains, which introduces
indeterminacy into the discrete prepares graph as discussed in Chapter 3.

For these demonstrations, the Deminer robot operates among a set ajin@ilppstacles that
define the ten meter by ten meter world. Figure 6.4 shows the projection of&lh&&ntiated

0.151-
0.1t
©
o5 0.05f
c
8
8 or —O— Aggressive
3 —8— Cautious
-0.05r- —#— Reverse Aggressive
—— Reverse Cautious
-0.1f-
-0.15}
_02 1 1 1 1)
~0.4 -0.2 0 0.2 0.4 0.6

v meters/s

Figure 6.2: Four sets of bounded steering inputs used in Deminer exp&simen

(© 2007 David C. Conner 81

& (radians)
(]

y (meters)

1
0.3

.0.5 6 0.5 1 v (meters) 0 -05
% (meters) % (treters)

a) Projection of cells into workspace with obstacles b) Representation of cells in three-dimensional pose space

Figure 6.3: Detail of seven cells in environment.

policies into this workspace. The world includes several narrow cagidod openings, with the
narrow corridors measuring approximately one meter. This provides motaof approximately
16 centimeters on either side of the robot, but prevents the robot frony héie to turn around
within the corridor. The policy domains projected into Figure 6.4 appear toMag &om the
obstacles; however, the expanded cells that account for body ahapmich closer to the obstacles.
The expanded cells are not shown in Figure 6.4, but an example is shdwguire 5.9. Figure 6.5
shows a representation of these 288 policy domains in the three-dimerzsisespace.

The designated navigation task is specified as bringing the robot to the midttle wer
corridor. This navigation goal corresponds to the goal set of partitadal policy, which is chosen
as the goal of the ordering. D*-lite is used to generate the ordering ofépapes graph associated
with the suite shown in Figure 6.4. After the system state passes through @hgdadt set of this
designated goal policy, the execution is halted.

A total of 12 different experiments were conducted on the actual robiesd experiments are
based on dead-reckoning position estimates. As a result of deadineglerror, inherent in all
wheeled-mobile robots, the robot would have crashed into some obstadiésdy been physically
present. Therefore, we ran the robot in an open space, but usgublibies that consider the
obstacles shown in Figure 6.4. In this mode, the robot “hallucinates” thaabs. With this dead-
reckoned position estimate, all 12 experiments ran to completion providingp&gifrooncept, and
demonstrating the reliability of the approach. Seven representative rigeaitsnique initial poses
are presented below; the remaining five tests duplicated some initial posesimiltr results.

82 (© 2007 David C. Conner

v (meters)

-3 8] 3
% (meters)

Figure 6.4: Projection of 288 cells into the workspace.

f (radians)

¥ (meters) 4 -4

% (meters)

Figure 6.5: Complete suite of 288 cells in three-dimensional pose space.

(© 2007 David C. Conner

83

Figure 6.6 shows four paths that start from four different initial condgjdout converge to the
same goal. The paths are shown on the same plot to underline the global ofthe resultant
hybrid control policy. It is worth emphasizing that the paths shown are glétben dead-reckoned
estimates of body position and orientation from an actual robot run. Theéudpaths are the result
of policy switching according to the ordering defined by D*-lite using theares graph for the suit
of policies shown in Figure 6.4; an explicit desired path is never calculdiee paths are labeled
(#1 - 4) clockwise from the lower left.

The paths labeled #5 and #6 in Figure 6.7 demonstrate the flexibility of plannihg space of
control policies. Path #5 begins near the same position as path #1 (shoiguiie 6.6); however,
the orientation is approximately 180 degrees different. The composition aff paticies enables
the robot to back up, stop, and then move forward to the goal without collidittgan obstacle.
This is because the policy suite also includes policies that allow the robot to gwerse. The
policy switching between forward and reverse is automatic given the partictdering, with no
operator intervention. To avoid damaging the real robot, the system igedda come to a stop
before switching between a forward and reverse policy. Similarly, patiet@onstrates a more
complex K-turn induced by the composition of the simple SQ policies shown in &igdr. The

vy (meters)

X (meters)

Figure 6.6: Four experimental runs demonstrate the “global” nature ofyhiedhcontrol policy
induced by the ordering of the policies; only the initial conditions vary. Tt@gegtion of the
individual policy domains are shown in light gray. The actual data is plott@dlasecond intervals;
robot symbols are drawn for every five seconds of travel time.

84 (© 2007 David C. Conner

y (meters)

—Reverse

-5 0 5
X (meters)

Figure 6.7: Two additional runs using the same ordering. Run #5, whidis stahe same position
as Run #1 but oriented 180 degrees apart, automatically backs out afrtiogvrcorridor, and then
switches to forward motion. Run #6 demonstrates a complex K-turn manewetraoound a sharp
corner. The behavior is automatically induced by the composition of localigslic

policy suite does not include policies that are expressive enough to wiowker right corner in
one continuous motion. While this points to the limitations of this particular suite of pgjitie
validates the basic approach. The combination of simple policies with discreteingais still
capable of generating expressive motions; thereby demonstrating thelifiexf planning in the
space of control policies.

A second advantage of planning in the space of control policies is the abitty fizst planning
and re-planning. In this case, the planning is over a prepares grapbm§t288 nodes. Figure 6.8
shows path #7, which starts near the initial condition of path #6. Path #7<ggiconverge to
path #6,which is shown as a dotted line; however, just after the K-turn thpdli@ies crossing the
circular obstacle shown in Figure 6.8 are flagged as invalid. This triggergpkanning step using
D*-lite that reorders the policies, thereby inducing the robot to take “thg Veay around” via path
#7. This re-planning occurs in real time, while the hybrid control policy ecexing on the robot.

This experiment served as an early proof of concept. The experiraarrtstrates using simple
local feedback control policies to induce a global behavior on a singg-monholonomically
constrained robot. Planning and re-planning on the prepares grapsdaw overhead. The policy

(© 2007 David C. Conner 85

y (meters)

0 5

X (meters)

Figure 6.8: Paths #6 and #7 diverge in response to two policies that atelated during run #7;
D*-lite efficiently re-orders the policies during the run as additional infdramais gathered. The

dark circle represents a new obstacle that invalidates certain policies.

composition induced by the hybrid control policy allows complex behaviorsterge in a provably
correct manner through the policy ordering.

86 (© 2007 David C. Conner

6.1.2 ‘LAGR’ Robot Experiments

The previous experiments did not have integrated localization, which limits thesitipal value.
Using pure dead reckoning makes the experiment too much like a simulatiore hglthd con-
trol system is not subject to disturbances due to localization error amelction. To address this
shortcoming, a second set of order-based experiments uses a quijghexd with an integrated
vision-based localization system. This allows the hybrid control approaetlaped in this thesis
to be evaluated in an integrated system.

In the next set of experiments, we use the ‘LAGR’ robot shown in Figudecause it has four
pairs of stereo cameras to perform vision based localization relative terklamdmarks placed in
the environment; the landmarks are color coded as shown in Figure 6.90ddization system
uses an extended Kalman filter to update the pose estimate based on measuoémarge and
bearing to the identified landmarks. The system is now subject to distubhased on jumps in
the pose estimate as new landmarks come into view.

In addition to the different robot, these experiments are carried out irffexatit environment
with a different policy suite, which uses PF style control policies. The HiEips are more natural
for specifying motion around tight corners than the SQ policies used in th@riee experiments.
This is because the PF policies can be deployed relative to an arc in \moe&sghere the SQ
policies had a straight central axis. Figure 6.9 shows the LAGR robaesstully navigating a
particularly tight spot under closed loop control.

Instead of the manual instantiation approach taken with the previous expésinteese PF
policies are instantiated using the cache and reference point apprisackssiéd in Chapter 5. A
total of 313 policies are systematically defined in the cache; 156 forw&@lrdverse, and one
special ‘Halt’. These policies include various widths, lengths, and alit. r&ach policy in the
cache is associated with a one of thirteen bounded input sets; the inpetscfopolicy are taken
from its associated input set. See Appendix F for specific details aboinpgbesets. The input
sets include sets for straight PF policies and arc based PF policies. Batirdoand reverse sets
are associated with each group, as are aggressive and cautiou$tsetsets for straight policies

i

Figure 6.9: ‘LAGR’ robot navigating a corridor. Three color-codeadaarks, which are used by
the vision based localization system, are visible in the image.

(© 2007 David C. Conner 87

allow less aggressive steering, while those for tight turns use a cautiovartl speed and more
aggressive steering. By matching the input set to a particular policy, gubéek is tuned to the

local conditions. Even though the robot is capable of zero-radius, tilnagput sets are constrained
to excludes zero-radius turns; this approximates the behavior of mos&raimed systems such as
cars, and provides a greater challenge to the hybrid control approach

In the demonstrations here, the robot maneuvers about a hallway witthioraprridors; there-
fore, it makes sense to instantiate the policies in “lanes.” That is, the poli@esstantiated in
straight lines running the length of the hallways; the lines of policies arlmgmas to lanes on a
highway.

To further simplify policy instantiation and planning, some local policies aramgd into meta-
policies. Figure 6.10 shows a meta-policy associated with taking the systemofie of three
lanes entering from the right and moving the system to the top most lane exiting tefth The
meta-policy defines an order-based switching strategy between its contgamiieies, which are
defined with respect to a common reference point. A meta-policy is instantigtetstantiating
its component policies relative to its reference point; the meta-policy can ernlyskantiated if all
of its component policies are collision free relative to a specified referpot in the free pose
space. Figure 6.11 shows the component policies to scale, along with tredexpcells defined by
the robot body size and shape.

While the component policies could be instantiated individually to accomplish the &zsk,
meta-policies simplify the deployment by grouping similar behaviors. For plgrpumposes, the
meta-policy is treated as a single node in the prepares graph. Furtheth®reeta-policies can
allow manual verification of the prepares relationships. This can allow pslibe cover the goal
set, but do not all contain the goal set center, to be prepared as jg gnigiremoves the restric-
tions of Section 5.6 for automated verification. By design, the meta-policiesatinly designated
component policies to be prepared. This affords the designer moreocowmérr the meta-policy

0.95}

0.9}

0.85}

0.8}

y (m)

0.7}

0.65}

0.6}

0.55}

4 45 5 55 6 65
% (m)
Figure 6.10: An example meta-policy that uses five PF style policies to movel#meg coming

from the right into a single lane exiting to the left. The policies are shown prEajento workspace.
To enhance the detail, the figures axes are not equal.

88 (© 2007 David C. Conner

y (m)
y (m)

X (m) X (m)

a) Meta-policy projected into workspace b) Expanded meta-policy showing body extent in workspace

Figure 6.11: Example meta-policy used for LAGR experiments. The meta-patinyains are
shown relative to obstacles in the environment in the proper scale. Thie figuhe right shows the
body extent into the workspace for this meta policy. Three robots arersbvarious poses on the
cell boundaries; the robots use a bounding polygon for calculating tiedxdent.

behavior by allowing normally unused component policies to be added bostoess, without in-
cluding them in the prepares graph used for planning. These compuoier¢s can only be active
after the meta-policy becomes active.

Several meta-policies are defined based on needed motion in the halllwegddition to the
“lane change right” meta-policy, meta-policies for “lane change middle” dmk‘change left” are
defined. Given the narrowness of the hallways, only three lanesd@at meters apart are defined
in most corridors. The lanes are defined in the forward direction alonigtig¢h of the corridor.

Several meta-policies associated with turning corners are defined,imglioth “left turn” and
“right turn”. Figure 6.12 shows an example left turn. The turn meta-policielside simple arcs
of various radii to blend three lanes into one orthogonal lane. To impweasiness, the turning

Figure 6.12: Meta-policy used to turn 3 lanes left.

(© 2007 David C. Conner 89

policies include both short radius turns and longer radius turns. Theéaligs arcs blend with the
short radius turns to provide a transition from straight motion to turning mations

Many of the hallways were so narrow that a simple arc could not navigatealways; there-
fore, two different meta-policies induce K-turn motions in the narrow hatsvé&igure 6.13 shows
actual data from a K-turn executed by the robot during an experimerthidrcase, the behavior
is encoded in the meta-policy by design, where the behavior emerged asexjoence of discrete
planning in the Deminer experiments.

The meta-policies are implemented in a modular fashion that makes the planniegemodion
transparent to the robot executive. When testing for inclusion befecerbing active, the meta-
policy only tests those component policies designated as inlets for the gsepelfinition. Once
the meta-policy becomes active, all component policies are tested using tmalimielering; that
is, the inclusion test resorts to a total order search over component paficiecessary once the
current node is associated with the meta-policy. This approach prowtestness to the meta-
policy, while given the designer control over when the meta-policy is alloiweoecome active
initially.

The lane change meta-policies are instantiated at regular intervals alarlg spaced lanes in
the corridors. The component policies in the lane-change meta-policiessoeiated with input
sets that have positive forward velocity. Turn and K-turn meta-policiesrestantiated in a way
that they are prepared and prepare the basic lane policies at the @@igrgmctions. In addition to
the meta-policies, a few 180 degree arcs are used in the larger cetitralyhi@ allow continuous
turns. By design, according to the instantiated policies, the robot is onlyedidavreverse motion
in certain spots through the use of a K-turn maneuver or 180 degree #re wentral corridor.
Otherwise, the robot must travel in a loop.

Two additional meta-policies are defined to navigate a small “nook”; Fig@etéws the robot
navigating this nook. When the robot is in the nook, it is halted by a spedialgbat is prepared
by the incoming meta-policy; the halt policy prepares a meta-policy that exitthle n

The use of meta-policies reduces the total number of nodes in the pregpapésthat is used
for planning. In this case, a total of 309 meta-policies and 86 individulidips are deployed in
the environment. Thus, the prepares graph used for planning has@mlyogles, compared to the
grand total of 2846 PF policies that are instantiated in the environment. &ne ¢otal includes
both individual and meta-policy components. The policy suite includes 3&ki&qgs, the 2846 PF
policies and 309 meta-policies.

The robot software executive functions the same as with the Deminerimgregs. The plan-
ning takes place over the 395 nodes in the prepares graph. Duringtiexeavhen a meta-policy
becomes active, it is treated as a switched hybrid control policy in its owy filgé component
policies are activated according to the meta-policies local ordering. Onxdwitve level, the
meta-policy remains active until the state enters the domain of a child node afiibréng, or exits
the domain of all policies in the meta-policy’s collection of component policies.

a) Approaching K-turn b) Executing reverse motion b) Departing K-turn

Figure 6.13: Plot of data from actual robot experiment as the robauge a K-turn in the upper
hallway. The K-turn is automatically induced by the composition of policiesdagsesimple arcs
and straight path segments.

90 (© 2007 David C. Conner

Figure 6.14 shows the results of executing the hybrid control policy irdlbgehe ordering of
the policies. The meta-policy corresponding to stopping in the small nook lnes®n as the goal.
The figure shows eleven different runs from five different initialditions. In most cases, the curves
overlap and are indistinguishable, which shows the repeatability of therpehce. Figure 6.15
shows the individual runs. Figure 6.16 shows a close up of the findiigemation in the nook; the
eleven overlapping robots closely match one another, which demonstratesptratability of the
closed loop system.

During execution, five of the eleven runs experienced disturbancesotilathe system pose
estimate outside the domain of the current policy. In these cases, the taalhad searched, a
valid policy was found, and the robot continued to the goal.

To demonstrate re-planning during execution, two additional runs amenshoFigure 6.17.
During execution 24 policies that pass through the lower corridor arédaved, which triggers a
re-planning step using D*-lite. During the initial planning stage, the D*-lite $adgeproximately
0.050 seconds to order the 395 nodes of the prepares graph. Tlte Bg-planning step required
only 0.018 seconds; this compares favorably with the 0.01 second loop tirtteefmbot executive
function. During these re-planned runs, the executive needed whabartotal order twice per run.
These searches were required near the K-turn in the lower left corasidisturbances allowed the
robot to exit the policy domains due to the aggressive turning that is reluire

Figure 6.14: ‘LAGR’ robot navigating corridors using a ordering oftamgiated policies. Eleven
different runs, from five different initial conditions, converge to thesignated goal set. The five
lighter green robots mark the initial conditions; the darker blue robot maekgdhl. The corridors
shown represent an approximately 29 m x 27 m portion of Carnegie Mgliewell-Simon Hall
A-level.

(© 2007 David C. Conner 91

) k)

Figure 6.15: Details of eleven runs using the ‘LAGR’ robot navigating withgame ordering of
instantiated policies.

92 (© 2007 David C. Conner

Figure 6.16: A close-up of the final poses. This figure shows the refsoiits 11 runs; the closely
overlapping robots show the repeatability of the performance, evenaiigruns.

-

a) Run given original information b) Two runs after re-planning.

e

Figure 6.17: D*-lite is used to re-order the policies after policies traversieglower corridor
are invalidated by an obstacle. The alternate route executes a ‘K-turre ilovirer corner, as the
system cannot turn around in the hallway using the policies in the cacheseTtyures show an
approximately 19m x 19m square of the corridors.

(© 2007 David C. Conner 93

In addition to the thirteen successful runs, four experiments ended imefailben the pose
estimate exited the domains of all policies in the deployment. Two of these fouefailere during
execution of the K-turn during re-planning experiments. That is the dstwds encountered during
the aggressive turns were significant enough to take the system outsiderttains of all policies
in the deployment.

These are failures in the sense that the robot ceases execution,rarad czcover with the
existing suite of policies, but not in the sense of crashes or incorréetvime. The safety of the
approach is preserved, as the robot halts execution and comes tafegts soon as the pose esti-
mate exits the domain. These four experiments do not invalidate the hybridlcapproach; rather
they demonstrate the inherent safety encoded in the explicit domains. prwaal automatically
recognizes when the system is outside a valid domain, and is able to haltieme&w most cases,
these failures could be avoided by deploying more policies in the environan@hincreasing the
coverage fraction of the policy suite.

There are two main causes of these failures where the system exited thie doegpectedly,
and thus violated the conditional invariance of the local policies. The éiatas to the localization
system; as new landmarks come into view, the pose estimate occasionally clestge than the
robot can respond. This occurs relatively infrequent, as eviddmnctte many long successful runs.

The second contributing factor is errors in commanded velocities. The LA®BRBt, while
appropriately designed for its intended function of outdoor navigatioRkslaafficient control res-
olution for fine positioning in relatively narrow environments that necégshave thin policy
domains due to the size of the robot. Its velocity control is not sufficientlyoresive mainly due to
limited encoder resolution, which causes noisy velocity signals and limits theotgatns that can
be applied, and to large disturbance forces due to the caster wheelag Rggressive turns, the
combination of localization update changes and velocity controller error sillog/system to exit
the policy domain because the actual velocities do not match the commandeitieglat viola-
tion of the kinematic assumption of policy design. Again, the hybrid contralagmi with explicit
policy domains defined by the cells, recognizes that the pose is enteringafe uegion, and halts
execution.

Another potential source of failure is unwanted limit cycle behavior, whimtuos when a dis-
turbance takes the system outside the domain of one policy, but the statéuisedap, the domain
of a lower priority policy. This violates the assumption of monotonic switchingirassl by the
order-based approach [21]. For limited disturbances, this is not dgpnoltf the disturbance occurs
repeatedly, the executive can become trapped in a cycle between thedanes pnd fail to make
progress towards the goal. This failure was observed during some praijn@rperiments, mainly
near the aggressive K-turn. The most likely cause is jumps in the pose estasdsmdmarks come
in and out of view. In general, the localization is relatively consistent; kewgumps of several
centimeters have been observed. This failure has not been obserwedame additional policies
were added to the K-turn meta-policy before the final experiments.

In spite of the limitations of the LAGR robot, the order-based hybrid contoticy robustly
addressed the coupled navigation and control problem in most casegewliailures could have
been addressed by adding more policies to the suite of local policies intordapture more of
the free pose space. For single navigation tasks, the order-base@deppo generating a hybrid
control policy proves reliable.

94 (© 2007 David C. Conner

6.2 Model Checking-Based Sequence Planning

While the order-based approach allows a single task to be addressagptioach does not handle
multiple tasks that depend on temporal constraints. One might imagine specifggmguance of
sub-goals, and then reordering the policies for each sub-goal in ltuithis mode, a higher-level
control would switch between hybrid control policies. While not infeasibéee must be taken to
guarantee that each sub-goal is reachable from the previous. foottee this requires the sub-
goals, and their ordering to be defined prior to the policy orderings, whiphlead to unrealizable
sub-goals.

In this section we explore an alternative approach that automatically sgetbifiehigh-level
“program” by specifying a sequence of policies that satisfy some spataifiic The approach is
based on model checking, which is used to define a sequence of policgse wvocation will
cause the system to satisfy a high-level specification [36, 37] . Theip@orcurs in the space of
instantiated control policies using the prepares graph. The approtmhatically checks that the
specification is realizable, and automatically generates sub-goals agtequir

To demonstrate the utility of this approach, a multiple-task scenario is simulatepthsirobot,
obstacle environment, and policy deployment described in Section 6.1.1sc€hario is modeled
on a mail delivery robot operating in an office environment. The robotchvhegins in a given
region, is tasked with picking up a package at a designated region, epding the package off
at the mail-room. The robot is also tasked with picking up two packages at tiveaman, and
delivering them to two separate locations. The robot is to finish at a dés@yregion.

Each pickup or delivery point is associated with the goal set of a speciicy. Using the one
or two-letter alphabetic labeling of the local policies, the specification mayes gis

e Start in location BT; that is start within the domain®gr

Pickup (visit) at either DE or FO, then deliver to GO (mail-room); that is, fisto either
4(Ppg) or 4 (Pro), and then go t&7 (Po).

Note, policies DE and FO have goal sets in approximately the same workspsitien, but
the goal sets are 180 degrees apart in orientation.

Pickup GO (mail-room), then deliver (visit) CR; that is, fram{®co) 9o to¥4 (PcR).
After CR, deliver to CF; that is, aftef (®cr) go to¥ (Pcr).

Avoid BA, BB, BH, and HlI; that is policie®ga, g, Py, and®y; are invalid.

e Finish in location A; that is at the goal set f, .

The plan must generate motion that navigates between the regions BT andwvaynthat satisfies
the other specifications.

Given an LTL encoding of this temporal specification and the prepasshgmodel checking
techniques are used to generate an open loop sequence of policiegitfatise specification[36,
37]. The policies are executed in the same framework as the order-apgezhches by encoding
the sequence of policies as a tree where each node has a singte Thédey difference is that now
the order must be maintained; the system cannot recover from a peidarbg searching the tree
as an ordered list. This is because multiple nodes in the sequence may mapaim¢éheostinuous

2Many thanks to Hadas Kress-Gazit at UPenn for assistance in endbdisgecification and executing the planner.
3The model checking-based approach used here does not allogleteministic transitions; therefore, transitions
that depend upon the extended prepares relationship are eliminateth&qmrepares graph before planning.

(© 2007 David C. Conner 95

policy. The ordering of policies is critical; in the event of a disturbance sdggence must be re-
planned with knowledge of what sub-goals have already been satisftedtshe specification can
be modified accordingly.

Given an initial position and orientation of the robot that lies within the domairotéy BT,
executing the policies according to the given sequence satisfies thecemiti Given the prepares
graph and specification, the model checking procedure guaranteestiitdoy construction. In this
case, executing the sequence will first take the robot to either DE or then to GO, after
reaching GO, the system reverses course and visits CR, and thentiCfinally reaching the goal
at A. All the while, the system never executes policies BA, BB, BH, or Hile Bimulation of this
plan is shown in Figure 6.18-a. Alternately, we can change the specificatidhat instead of
avoiding the regions (BA, BB, BH, and HI), we visit either BB or BH. Tlesults of this later result
is shown in Figure 6.18-h.

This task level planning worked well in simulation, but limited attempts to executdans pn
the Deminer robot exposed some limitations. All runs ended in failure whertaripation took the
robot outside the domain of one of the policies in the open loop sequenctheHbeminer robots,
these perturbations tended to be small as the localization was based oedeatrg, and did not
suffer jumps in pose estimates. The perturbations were mainly due to velocttpldag and caster
wheel drag. In spite of the perturbations being small, the robot exited timnaide of some local
policies, primarily because the model checking-based planner chosepsiicies with relatively
small domains.

These policies with small domains were chosen for two reasons. First, thel toetking-
based approach does not consider heuristic costs. In the ordst-hpgroach, policies with small
domains are assigned relatively high transition costs, which means thegptangh priority, and
are only invoked if necessary. Second, the model checking-bagedamh does not consider non-
deterministic transitions. Therefore, all policies that depend on the extqirdpares relationship
are invalid. Around tight turns, only relatively small domains remain valid. @maroach to ad-
dressing this issue, is to use meta-policies with the extended prepares stlgtiand do model

° I
A\

‘/\
@ 1 7 ‘/\/\
o) I \

2
-
= £

I\ N

y (meters)
y (meters)

0
x (meters)

0
X (meters)

a) Path #1 b) Path #2

Figure 6.18: Simulation of open loop policy sequences derived from teahjpgiic specifications.

96 (© 2007 David C. Conner

checking on the meta-policy level. Fundamentally, the open-loop sequiesegbe robustness in-
herent in the order-based approach because not all policies asidead; this limits the domain of
the resulting hybrid control policy.

The model checking based approach is also rigid in the sense that it diogiéom the system
to react to changes in the environment without re-planning. To allow modbleapproaches that
can react to changes, Kress-Ga#ital. [68] have developed an approach that uses the prepares
graph defined by our approach to generate an automata that reactgetedignsor inputs.

6.3 Automata-based Planning

Like sequence-based approaches, automata-based switching sirateg@pable of addressing
multiple tasks; however, automata have the added advantage of chanigawobog during runtime
based on gathered information without requiring re-planning. Combiningdahey composition
approach advocated in this thesis with automaton synthesis tools such agftfi@3eenables a
constructive approach to building a hybrid control policy whose contis@xecution satisfies high
level specifications, while enabling the constrained system to react toeméntal changes.

This section presents several experiments and simulations using the syap@®ach given
in [68]. As discussed in Chapter 4, [68] uses a disjoint workspacendgasition and adjacency
graph to choose policies based on our fully actuated policies for idealyateiss. In contrast, this
section defines the specifications and automata synthesis in terms of theeprgq@oh. This ap-
proach is more flexible because it can be applied to constrained systehadlcavs for overlapping
policy domains.

The section presents two examples. The first uses the LAGR robot dictepdrom Sec-
tion 6.1.2; both simulations and experiments are discussed. The secondstiatiam uses PF
policies with an Ackermann steered vehicle to demonstrate complex traffigibedha simulation.
The latter presentation includes a discussion of using this approach aasikddy a decentralized
multi-agent control system.

6.3.1 ‘LAGR’ Robot Experiments

The first example is termed the “timid night watchman.” The LAGR robot is task#dpatrolling
office corridors by visiting four checkpoints in turn. If an intruder is d&td, as indicated by a
binary sensor called ‘Intruder’, the robot is to “run and hide” in the smadlk near the workspace
center; after the intruder is gone, the robot should resume patrolling sygiem also includes a
‘Hazard’ input; upon sensing a hazard, the robot should stop in plHoe.robot resumes motion
when the hazard is clear. The robot has three outputs: ‘Stop’, whidteites that the robot should
cease executing its local policy and stop in place, ‘CheckPoint’, which sngenrobot is at a
designated checkpoint, adg, which encodes which policy is associated with the automaton node.

The desired behavior is encoded in linear temporal logic (LTL) and inpiliet@utomaton syn-
thesis algorithm developed by [68]. The algorithm takes the initial conditioaissition relations,
and goals, then checks whether the specification is realizable. A speaificarealizableif an
automaton that specifies valid transitions can be synthesized given the piitsinif the specifi-
cation is realizable, the algorithm extracts a possible, but not necessaidgyey automaton that
implements a strategy that the system should follow in order to satisfy the dbsinedior.

Using the specific “timid night watchman” task, the behaviors are encodédlaws. The
Hazard input is initiallyFalse, and there are no other assumptions about the environment so both
its transitions and goals are setTeue. The Intruder input is allowed to be eith&rue or False.

(© 2007 David C. Conner 97

The system state is assumed to be in one of two initial policy domains, the initial gddicenot
checkpoints, and the system is not stopped by hazard. The systeitiagrensclude knowledge
of the prepares graph. The system stops if and only if there is a haziasdd The system also
encodes that the current policy reference does not change if thensgsops. If an intruder is
sensed, and the system is hidden in the nook, the system should stay iokh&he system should
always patrol if the intruder is not sensed. The CheckPoint output isas®d only if the robot is at
a designated checkpoint policy. The desired behavior, given as stensgoal, is that the system
either stops or eventually visits each checkpoint in order infinitely often.

Together, the automaton and policy suite serve as a hybrid control polbicyth&se specifica-
tions, the extracted automaton has 2400 nodes. Executing the local quiicts as specified by
the automaton induces a continuous system evolution that satisfies the higsplesiéication. At
the start of execution, we search the entire automaton as a list of nodes nmdié is found that has
the correct input state (HazardFalse) and whose associated policy contains the initial pose. This
approach, which allows starting from some arbitrary initial pose, workghie particular scenario
because of the cyclic behavior of the scenario; other scenarios miglite¢hat the robot start in
the domain of a policy in an explicit set of initial policies. A simulation run is showRigure 6.19.
The intruder detector is triggered at an arbitrarily specified time.

The automaton governs the selection of local control policies. The autortratmsitions be-
tween nodes as the system pose enters the domain of a policy associatediithreode of the
current automaton node. In other words, from npgdeat each time stépthe values of the binary

“The policies are designed as continuous control laws; however, thenraptation on a computer induces a discrete
time step. We assume the time step is short compared to the time constantlostt:loop dynamics.

.

Figure 6.19: A simulation of path induced by an automaton that encodes theitwepatrol the
corridors by visiting four specific policy domains is shown. Upon sensitigteuder’, the “timid
night watchman” goes and hides in the corner until the intruder leaveseThbots are shown: the
initial pose to the right, the final pose when execution is terminated near the rraddl¢éhe pose at
which the intruder is detected in the lower right.

98 (© 2007 David C. Conner

sensor inputs are evaluated. Based on these inputs, all valid sucoedssrare determined. If the
vehicle is in the domain of policy;, which is associated with a valid automaton successor node
pj, the transition is made. Otherwise, if the vehicle is still in the domaid,gfwhich is the active
policy associated with nodeg, the execution remains in noge If a node has more than one child
node that represents a valid transition, the choice can be made arbitranil{helSe experiments,
the first valid transition as defined by the synthesis algorithm is chosen.eXégution based on
continuous motion is equivalent to the discrete execution of the automato81[37,

Figure 6.20 shows the progression of the system through the automates asdhe system
moves through the environment. Note the cyclic nature as the system completegatrols before
the intruder is detected. As the automaton state transitions, so does thetadgoali@y as shown
in Figure 6.21.

In this execution strategy, the continuous evolution of the system goverdssitrete transitions
in the automaton; therefore, the resultant transitions are asynchr@mlispt governed by a fixed
time step. In this current implementation, the discrete inputs act as guards aatdmeaton tran-
sitions; the discrete input must match the value associated with the child nodewdralhsition
into the child node, but does not force transition out of the current.nddether approach could
check the discrete input at each update step and force transitions agfivefh automaton node if
the inputs do not match the reference input. This would require that eaehhas a child with the
same policy reference, but different discrete inputs .

If the prepares graph changes, the automaton synthesis algorithm rmesture Figure 6.22
shows the simulated path taken when an automaton is synthesized for theeprg@ph with 24
policies associated with the lower corridor invalidated. The resultant autontatatains 2580
nodes; its execution correctly satisfies the original specification by onbking valid policies.

2500~
2000 ﬂ ﬂ d
o 150¢
()
©
(@]
< 1000
500
0 1 1 1
0 500 1000 1500 2000
Time (s)

Figure 6.20: As the system executes, the automaton changes nodesmé#sediscrete inputs and
inclusion of the current pose in a given policy domain. The graph shaws tlistinct phases. The
thirteen points marked with '*" indicated the check points passed. The thigkeson, which is
actually closely spaced” symbols, shows the portion where the intruder is detected. Notice that
the system makes multiple passes past each checkpoint before the iigrdetected.

(© 2007 David C. Conner 99

3500

3000

2500

20004

Policy ID

150¢4

100(¢

500y

0 500 1000 1500 2000
Time (s)

Figure 6.21: Each node in the automaton is associated with a particular policg Buite. As
the system executes, the local policies are activated by the automatoropathediocal pose esti-
mate.The graph shows the same three distinct phases as Figure 6.20.

0

Figure 6.22: As new information becomes available, such the obstacle in tke donridor, the
automaton synthesis formulates a different automaton based on changegtegares graph. The
new automaton preserves the correct behavior.

100 (© 2007 David C. Conner

The automaton synthesis approach guarantees the correct behalgorveny reasonable as-
sumptions. First, the automata synthesis only returns an automaton if the spiecifis realizable
for the given policy suite and associated prepares graph. Secoed, @irealizable specification,
the algorithm is guaranteed to produce an automaton such that all its execdisfy the desired
behaviorif the environment behaves as assumed. The construction of the automatoe issihg
LTL statements that encode admissible environment behaviors; if the emérdrviolates these
assumptions, the automaton is no longer correct. Since the specificatimdeehe transitions
allowed by the prepares relationship, the only case in which the systenmspustan the domain of
., orin any successap;, is if the environment behaved “badly.” That is, either some disturbance
caused the policies to violate the prepares relationship, or the environinéates assumptions
governing the allowable discrete inputs. This later case requires capsfabr design, with only
those restrictions that are necessary. Either case invalidates the automadkenevent that a valid
transition does not exist, the automaton executive raises an error fthbatis the system. A new
plan must be requested.

Unfortunately, for real systems disturbances are a fact of life. Policigsbhmalesigned to be
as robust as possible, but disturbances may still take the system outddrtieen of a currently
executing policy. Often these disturbances are simply due to pose estimatiatesijas described
above. The hybrid control system should have a method of recovérghwvill likely require
some knowledge of the hybrid control system and task. For the taskilsegan this section, our
approach is to search the automaton as a list of nodes until a node wkosegel policy contains
the current pose estimate and whose discrete input matches the cunsort\sdue; as is done for
the initial condition. This works in this example because of the cyclic haturesabigk.

A more fundamental problem occurs when the disturbance takes the systside the domain
of all policies in the automaton. Depending on the initial specification, the autonsgtahesis
does not necessarily use every available policy. As with sequenee-bpproaches, this has a neg-
ative impact on the overall robustness of the policy composition technitpie/esto the collection
of available policies. This thesis considers two approaches to addrélsimyoblem of unused
policies.

The first approach explicitly allows the initial condition to be in any available paitd have
any allowable sensor value. The assumption during synthesis that thensg$teone of two initial
policy domains is made to limit the size of the automaton. No assumptions about thepolités
could be made; this would force the automaton synthesis to include all policies/olld greatly
increase the size of the automaton. The particular implementation of the syralgesithm used
in this thesis precluded this approach; this is not a theoretical issue, latkemilbbuild a more
robust synthesis tool to address this implementation issue [67].

The second approach, which is used in these experiments, is to augmanittiesized automa-
ton to add nodes for each unused policy/sensor combination. If a policwised by the original
automaton, but prepares another policy that is used for all input combisatfeen a node is added
to the automaton with the unused policy as a reference. This added nodesid¢ine® sensor inputs.
The children of the added node are all nodes in the automaton whoséatesdqmlicies are pre-
pared by the added node’s policy or have the same policy referencge &lrinput combinations
are covered, a valid child transition will eventually exist. This process isategl until all policies
that prepare others are added to the deployment. This approach maxineize®thll hybrid con-
trol policy domain for the given collection of domains, while adding the smallesther of nodes
to the automaton. This gives the system a way to “get back on track.” Ifitiérldance causes the
system pose to exit the domains of every policy in the suite, then the hybricbtpalicy will stop
the robot and cease execution. Only by adding additional policies, gedeeating the automaton
can the system recover.

(© 2007 David C. Conner 101

Figure 6.23: Actual run on LAGR robot. Here, the robot resumes patgaddliter hiding early in the
experiment.

Figure 6.23 shows an example run using the augmented automaton. Duringérerental
runs, the ‘Intruder’ is signaled at will via a remote switch. The experimeatessfully satisfies
the specification. Figure 6.24 shows the progression of hodes durgt@n. Note that the node
ID’s above 2400 are those added during the augmentation processuiiitiese, the execution
would have ceased earlier due to disturbances. Given the augmentethtaripthe system is able
to search for a node whose policy contains the current pose. Eventhallxecution did quit when
a disturbance finally took the system out of the domain of all the policies. &ig@5 shows the
policy switching induced by the augmented automaton. The experiment weetedseveral times;
the automaton successfully induced the correct behavior each time untibdistes caused the
system to terminate; this points to the need for more policies to be added to thequiley

The drawback to the augment and search approach is that there is ng;lirstogfore, the sys-
tem will sometimes repeat an earlier portion of the patrol loop, prior to visitingtther nodes. This
problem could be addressed by adding an output that encodes wiwhstteam” check point will
be encountered next, and using this information to guide the search fidaede. This requires
associating each policy with the closest checkpoint before the synti@sespossible approach is
to choose the checkpoint that generates the least cumulative cost if@napglicy from a set of
costs generated by considering each checkpoint as the goal of a@al@yng. During disturbance
recovery, the system searches for a node whose associated patieyndmntains the current pose
and whose “ClosestCheckpoint” output matches the assigned chectqrdimt policy.

The automata-base approach is capable of producing complex behaxhiask allow the sys-
tem to react to changes in the environment via the binary environmental inpddétionally, the
automata-based approach allows the system to exhibit desirable limit cyckbss Bxample, re-
peatedly patrolling a hallway. Thus automata-based approaches aresuitadgle for repetitive

102 (© 2007 David C. Conner

3000

2500

2000

g

1500

Node ID

1000,

500r

0 500 1000 1500
Time (s)

Figure 6.24: Node switching with invocations of augmented nodes showr'bthé controller
would have ceased execution were it not for these added nodes.

350

300

250 /Fllr

N
o
o

Policy ID
=
gl
o

0 500 1000 1500 2000
Time (s)

Figure 6.25: Policy switching during an experiment.

tasks than order-based approaches. That said, the automata shoaldsaak all available poli-

cies, and provide a method of recovery, in order to maintain robustnesstuobénce that is the
hallmark of order-based approaches.

(© 2007 David C. Conner 103

6.3.2 Ackermann Steered Car-like Parking Simulations

This section provides an example of policy-based planning with the more cosygéem model
of an Ackermann steered car. Here, the scenario is one of searchiag &vailable parking space,
and then parking. The environment is known; what is unknown is whetlggren parking space
is available or occupied. The system has a local sensor for detectimgpapking spaces; thus,
the system must search for an available parking space by systematicaltggrast all the parking
spaces. If an open parking space is found, the system changesdodian searching to parking,
and executes the parking maneuver as illustrated in Figure 6.26. The dsuitsmstrate coupled
planning and control for a complex system that exhibits complex behaviatshiange based on
reactions to the changing environment.

The environment, shown in Figure 6.27, consists of two city blocks actedsim ten enter-
ing roads. Each road consists of two lanes that follow the American standairiving on the
right side. One block is surrounded by 40 parking spaces; 20 forlttegwise direction and 20
for the counterclockwise direction. The entry/exit points are labeled dlddkwise starting from
the north/south lanes at the top left of the environment. The parking spaeedentified with a
numeric identifier adjacent to each space. The roadway lanes andgapdnes are sized for an
urban environment. The robot system uses an Ackermann steered kimerodel that controls the
forward velocity and the rate of steering angle change; see Appendixdefails.

The parking demonstrations use a collection of 16 PF style policies, whidhstemtiated in
the policy cache relative to the origin. The cache includes policies forlingvetraight down a
roadway lane, for parking and leaving a given space, and for tuatingersections. Figure 6.28
shows examples of the policies for parking and leaving, which treated aspolétees for planning
purposes. Associated with the inlet policy of the parking policy is a senabd#termines whether
the parking space is available. If the parking space is unavailable, thgratkimg meta-policy
prepares some other policy further down the roadway lane. Figure B®@san example inter-
section, the deployed policies, and the extent of the robot body into tHespaxce. Since this is a

Figure 6.26: Parking behavior induced by the composition of local polidies.feedback control
policies guarantee the safety of the maneuver.

104 (© 2007 David C. Conner

401

20

meters

|
I
o
T

80

meters

Figure 6.27: The environment has 40 parking spaces arrangeddatfeeimiddle city block. Ini-
tially, there are five empty parking spaces randomly chosen in the environmen

simulation, only those policies needed for basic traffic are deployed. Nuogitis made to fill the
free pose space in order to provide robustness.

For the simulations in this section, a total of 306 policies are deployed in theoanwént.
The regularity of the environment allows an automated approach to policyiiadtan based on a
collection of reference points defined relative to the intersections améhgaspaces. The policy
total includes 40 parking meta-policies and 40 leaving meta-policies, as wadl esch left, right
and straight maneuvers at the six intersections. Policies to enter and |leagavihonment are
added at the 10 roadways connecting the environment to the outside Waiv&h the suite of 306
policies, the prepares graph is automatically defined as described in €hapte

(© 2007 David C. Conner 105

v (meters)
¥ (meters)

-6 -5 -4 -3 2 -1 0 1
X (meters)

X (meters)
a) Policies for parking. b) Policies for leaving
Figure 6.28: Details of policies used for parking and leaving. The poligiegh are shown relative
to the cache reference point, are shown wider than normal to show d8iaifmlicies are associated
with parking. Five policies are used to exit a parking space and prepéioy in the traffic lane.

meters

meters

40 45 50 55 60 65 70
meters

meters
a) Connected policy domains projected into workspace b) Boadsnt over the policy domains
Figure 6.29: Deployment of policies at an intersection. The polices inclue tthat pass straight
through the intersection, as well as left and right turns. Other policiessae to tie the straight

sections to the turns. The policy domains, which are widened to increasiityisiippear as thick
linesin (a).

106 (© 2007 David C. Conner

Basic Parking Scenarios

The basic scenario considers a single car that must park in the environiites environmental
input is a sensor calledark’ that tells the car if a parking space is available; the system output
identifies which policy to activate. The car may enter from any of the tenwagsl connecting to
the two blocks. The car can only determine whether there is a free pap<icg & we are in a policy
next to it. This means that ‘Park’ cannot becofee if the vehicle is not next to a parking space
or in one. Also, for implementation reasons, we assume that the input ‘RamidinsTrue after
parking. We have no assumptions on the goals of the environment, and maksumptions about
the availability of an empty parking spot. The allowable system transitions inthedgansitions
of the prepares graph, the vehicle cannot park if there is no parkexgespvailable, as indicated
by the ‘Park’ input, and if there is an empty parking space the car must pamoving the last
restriction may allow the vehicle to pass an open spot before parking. yBhens goal encodes a
list of policies the vehicle must visit infinitely often if it has not parked yet. Tiseof policies to
visit defines the area in which the vehicle will look for an available parkiragspin this case, the
visit policies correspond to the eight lanes around the parking spaxeg@ing clockwise and four
going counter clockwise). Note, this goal condition is true if either the vekislés these policies
infinitely often (when there is no parking space available) or it has parkefining a different
list of policies to visit would change the search strategy induced by the atdom#&dditional
specifications could be written to tie the search strategy to the point of eattyi® would increase
the size and complexity of the automaton.

For simulations shown in Figures 6.30 and 6.31, a new vehicle is introducedaatdom en-
trance. The parking spaces are filled according to the previous ruthefsmitomaton executes, if a
parking policy is a successor to the current state, the empty/occupiedisteliesked via the local
‘Park’ sensor. This work does not address the required sendgoasbumes a binary output. Tran-
sition to the parking policy is enabled if the associated space is empty. If thetimaris enabled,
‘Park’ remainsTrue so that other transitions are disabled until the vehicle pose enters the domain
of the parking meta-policy, and the system parks. Six runs are simulategithsirglobal parking
automaton; The first five runs park. In Run #6, there are no parkiagespavailable; therefore, the
vehicle continues to circle past every possible parking space, waitingaihex vehicle to leave.

(© 2007 David C. Conner 107

Run #1

Figure 6.30: Two executions of the basic parking scenario. The initiaitions for each run are
circled.

108 (© 2007 David C. Conner

Run #5 Run #6

Figure 6.31: Four executions of the basic parking scenario. The initiaittons for each run are
circled. The last run continues to loop as no parking spaces are available

(© 2007 David C. Conner 109

6.3.3 Multi-vehicle Scenarios

The automata-based approach to policy composition naturally extends to naritisygtems [68].
The local policies guarantee predictable local behavior of a single atentutomata governs
the switching between local policies to coordinate the high-level behavianagent. Taking
this approach further, Kress-Gaeit al. [68] use the environmental inputs to coordinate behavior
between agents using automata. Each agent runs its own automata-baseddytroller, which
responds to other agents via environmental inputs; that is, the outpute @igemt become inputs
to another agent. This section details a simulation using the policy compositioreapmadvocated
in this thesis with the automata-based multi-agent coordination scheme advoc$&il The
simulation results illustrate several issues that arise with this approach.

In order to expand the basic parking approach to allow for multiple vehieleasos, the LTL
formulas from above are modified. The approach uses an additionalangwseveral outputs. The
additional input is ‘Hazard’, which causes the vehicle to stop in place hakard can be triggered
by proximity to another vehicle, or by an external device such as a stop-Myhen the hazard
clears, the robot should resume motion as before. In a real system, lawanyls can be avoided by
slowing down, and waiting for the other vehicle to clear. For simplicity, theselatioas require
the system to stop. When the vehicle stops in response to a ‘Hazard’,dteensgutputsStop’.
Additional outputs signallleft Turn’ and ‘RightTurn’ as appropriate. There are also outputs that
signal the vehicles intentions for ‘Parking’ and ‘Leaving’. The automatatputs can be sensed by
other vehicles in the environment.

The LTL specifications from above are modified to take the new inputs atpditsuinto con-
sideration, and allow a new “leaving” behavior. Each vehicle in the simulatins a local copy of
one of two automata. The only coordination is via the individual ‘Hazandsee We now consider
each automaton in turn.

Parking Automaton The parking automaton for the multi-vehicle scenario is similar to the indi-
vidual case, but includes the stopping behavior and the additional oufplussystem transitions
include all the conditions of the individual parking case, plus the conditlmatsactivate the outputs
for turning, stopping, or parking as needed. The system goal is irglingeparking conditions,
but also allows for a vehicle to remain stopped if a broken stop-light or ent@head blocks the
roadway. With these specifications, the parking automaton has 2142 nodes

Leaving Automaton In this scenario, a vehicle is leaving its parking space and exiting the block
via some specified exit. The leaving automaton for the multi-vehicle scenaramteadra input that
specifies which of the ten possible exits the vehicle will exit. The initial envirarirggecification
is such that only one exit is specified. Two different vehicles leaving tifferdnt parking spots
may use the same synthesized automaton with different inputs that designdeéssitieel exit. We
require the exit specification to be constant, meaning it cannot changetasmgiven. We make no
assumptions on the infinite behavior of the environment, therefore the gogdanent remains set
to True. Initially, the car is leaving a parking space, hence it must turn on the lefisignal.

The system transitions are include the policy prepares relations, whichegolion on the
left/right signals, and always stop on hazard. The system goal spdtifiethe vehicle must go to
the designated exit policy unless it stops. With these specifications the leatimgaton has 1908
nodes.

The key to using these automata in a decentralized multi-agent scenario ittgaton pro-
vided by the ‘Hazard’ sensor. Each vehicle executes its own hazasdiseith a single binary value
‘Hazard.’ The ‘Hazard’ input is based on either a timed stop-light oioxipmity/precedence sensor.

110 (© 2007 David C. Conner

The stop-light alternates between north/south and east/west travel atorgattways. Each inter-
section transitions at the same time; there is a slight overlap where all direat®stopped. Any
vehicle entering the policies just before the left/right/straight policies atieéatsection checks the
current value of the stop-light. If the “red light” is visible, the ‘Hazardflia set toTrue.

The ‘Hazard’ sensor is a discrete hybrid automaton in its own right, that aseimpetermine
precedence based on the robot’s internal state and binary outputshexather robots relative
pose, velocity, and binary outputs. Thus the “sensor” is a mixture of aomig measurements
and discrete logic. The ‘Hazard’ checks proximity of other vehicles datedrmines the precedence
relationships between vehicles; that is, which vehicle must yield to the otheethiB simulation, the
‘Hazard’ sensor is hand-coded and tuned to given the properrpefwe. The sensor automaton
sets ‘Hazard’ toTrue whenever the car is too close to a car ahead of it (keeping safe distance)
whenever a car ahead is backing up to park (being polite), wheneveaiths leaving a parking
space and another car passes by and whenever another car is kepeirking space which the car
will park in next. In this decentralized coordination scheme, each vehitlazard’ sensor must
infer the intentions of the others based their outputs. There is no centralimschunication of
intentions.

Figure 6.32 shows the continuation of Run #6 with the hazard inputs addee foatking
automaton, and the new leaving automaton controlling the second vehicle. finstrenapshot,
vehicle #6 is just beginning to approach the intersection, while vehicle #% &ophe light. The
second snapshot shows vehicle #7 dutifully waiting for the signal, whiléckel6 has passed
through the intersection. Although not shown, after the stop-light clgvgéicle #7 exits the area

Run #7- a Run#7-b

Figure 6.32: In this continuation of Run #6, the two snap shots show a simple lmuwlépicle
scenario. A timed stop-light triggers a ‘hazard’ input that causes thielegteading east to stop.
This allows the vehicle from Run#6 to travel through the intersection, aadteslly park in the
newly available parking spot.

(© 2007 David C. Conner 111

and vehicle #6 continues around under the control of the global pagkitmmaton and parks in the
newly open spot.

Figure 6.33 shows an example of a more complex multi-vehicle simulation. At this$ ipoin
time, seven cars are moving in the workspace. Initially, 35 of the 40 parkiaces were randomly
specified as occupied. In this simulation, eight cars enter the block atetiffdimes and from
different entry points, looking for a parking space. The times and ewintpare (t=0.06 seconds,
Entry = 10), (1.0,2), (2.0,7), (5.0,8), (7.0, 5), (10.0,6), (15.0, 82.@%). During the execution,
three cars leave their parking spaces and exit the workspace. The piankisg spaces, and exit
point are (t=13.0, Parking=23,exit=1), (15.0, 6, 7), and (30.0, 325 simulation runs until 76.33
seconds of elapsed time when the last car exits or is parked. Figure &84 algeneral snapshot
of the simulation at a later time. Cars whose ‘Stop’ outpirise are marked with red ellipses; that

o=l I I
,\
= =0 "I

Figure 6.33: A snapshot of a more complex multi-vehicle simulation. Each vedxeleutes an
automaton that encodes the high-level specification “stop on hazardidned “drive around until
you find a free parking space and then park” or “leave your parkpage and exit the block”.
Coordination between robots is done via an individual ‘Hazard’ seinsodecentralized approach.
This snapshot is taken at 15.91 seconds.

112 (© 2007 David C. Conner

is, those cars who stop because the ‘Hazard’ inpdirise. The three stopped cars in Figure 6.34
are obeying stop-lights.

Figure 6.35 shows several close up looks at different traffic belaeiocountered during the
simulation. In (a), the blue car which is leaving the parking space has stojmulicated by a red
ellipse, to let the brown car drive by. This ‘Hazard’ was invoked basea@ “proximity sensor.”
In (b), red car is parking while the blue car waits for it to finish beforespags In (c), the orange
car is stopping to allow the gray car to complete a left turn, according to tleegeace established
by the individual car's ‘Hazard’ sensors. The white car on the left awileg the parking space
that later will be occupied by the brown car. Figures 6.35-d and (e) aresmapshots of two cars
parking simultaneously in opposite lanes. The car that started the parkirepwsaniater (bottom
lane) pauses to allow the other car to park safely. Figure 6.35-f showsargcstopping before a
stop-light. While the white car stopped based on the stop-light, the black kardbstopped based
on the proximity to the car ahead of it.

Figure 6.34: A later snapshot taken at 31.33 seconds during the simulé&tiaghis figure, cars
surrounded by red ellipses are cars that are stopping due to the Hagart signaled by the timed
stop-light.

(© 2007 David C. Conner 113

(a) Blue car leaving (t=15.91 s)

(e) Two cars parking (t=27.18) (f) Two cars at stop-light (t=46.39s)

Figure 6.35: Close up looks at different behaviors seen throughesirtiulation.

114 (© 2007 David C. Conner

Sensors, or more specifically the binary inputs used by the automatoral@niiental to the
success of this decentralized approach. First, as mentioned abovengwssmust satisfy the
assumptions made about them in the LTL formulas for the environment; otleetfrésautomaton
will not be correct. Failing to trigger ‘Hazard’ may allow collision as the localiges do not
consider obstacle avoidance. Second, even if the sensors do satiséyatsumptions, they may
still cause correct, yet unintended behavior. For example, if the proximitgas set the ‘Hazard’
input to True whenever another vehicle was in a certain radius, even if the other vel@slbehind
in a forward driving lane, both vehicles may get deadlocked; that is,wotid stop forever. While
this behavior satisfies the original specification, it does not follow the ggifinding a parking
space. On the other hand, both cars stopping might be a desired beklagioan accident occurred,
therefore we would not want to forbid it in the specifications.

Currently, there are no guarantees that the implemented ‘Hazard’ samsonaton is correct
in all cases, and will not introduce deadlock. Such unintended behamwiald not be present in a
centralized approach where the controller has full knowledge and sblgcal information as is
the case here; however, the centralized approach does not scal@ hestiiecentralized approach,
which does scale well for additional robots, may deadlock for a poordygded hazard sensor;
thus, much work remains to develop automatic ways of specifying the ‘Hagamdor automaton
and prove that the composition of these multiple automata is free of deadlock.

6.4 Summary

This chapter has presented several experiments which validate thaeippidvocated in this thesis.
The approaches to planning in the space of control policies, and corgdosal policies to induce
the desired behavior, is demonstrated with experiments on real robot&audt®ns on realistic
systems. A range of planning approaches and scenarios are dermzhsti@our knowledge, this
is the first experimental verification of these techniques on real wheelbdamobots with non-
circular body shapes; that is, body shapes where orientation is fumtanie the safety of the
approach.

Several broad conclusions can be drawn from these results. Inadjemreler-based approaches
are preferred over sequence based approaches due to the @d@amgn; this is in keeping with the
aim of designing “global” policies. Automata-based approaches areldsefyenerating complex
reactive tasks; the policy composition approach advocated in this thesiglsxb®se techniques to
real world, complex systems.

Overall, the results validate the approach; however, several issuebéan identified. First, the
policies can only induce behaviors that the system execute. If the meahaystem is incapable
responding to the controls, the properties of composable policies will beedblahus, either the
system dynamics must be modified, the policies redesigned, or additiona¢peldded to provide
more robustness. Since disturbances are a fact of life, automatadmedches should make use
of all available policies in keeping with the global policy theme, and provide aodeathrecovery
in the face of large disturbances. The hybrid control policy should age & method of identifying
undesirable limit cycles, and have a recovery strategy. Finally, while tuereata-based approach
to decentralized multi-agent control is promising, the design of a hybricosengomata, which
can provide provably correct performance with the composition of indalidutomata, remains an
open problem.

(© 2007 David C. Conner 115

117

Chapter 7

Conclusion and Future Work

This thesis extends sequential composition of local feedback controigsotic wheeled mobile
robots in a way that enables the automatic synthesis of hybrid control polidiesesulting hybrid
control policy inherits the safety and convergence guarantees froah fieedback control poli-
cies, and provably satisfies the high-level behavior by constructiois thlsis demonstrates this
approach on real mobile robots with multiple interacting constraints. The rolibish have non-
circular body shapes in addition to nonholonomic constraints and input bpapdrate in confined
and cluttered environments. This thesis treats these constraints in a holistiermamh enables
existing methods of formal symbolic planning to be applied to these highly comedraystems.
By leveraging symbolic planning techniques, complex tasks can be speatfeetligh-level, and
then executed in a manner that guarantees the correct behavior eystahs. We define the ba-
sic requirements for local policies to be composable in a hybrid control fkanke which guides
our policy designs. While wheeled mobile robot navigation is the chosen dpthaiideas in this
thesis are extensible to many constrained dynamical systems providedrodefitee composable
policies.

The approach uses the composition of memoryless state feedback catic@spto address
high-level task specifications in a provably correct manner. This thesislaps several generic
feedback policies that encode the low-level behaviors in a way thatesntiteir formal composi-
tion, and demonstrates several symbolic planning approaches on rei& nobots. The symbolic
planning methods automatically define switching strategies among the local pdtatealize
high-level behavioral specifications, or indicate that the desired i@heannot be realized with
the current suite of instantiated policies. This approach enables a forniabdnef constructing
near-global hybrid feedback control policies that respect localtcaimts.

This chapter provides a summary of the thesis contributions and discussgmptioach’s strengths
and weaknesses. The discussion points to future research, which withienthe approach and
extend its applicability. The goal is to allow even more complex systems to bemafitfolicy
composition in a way that guarantees formal correctness, and prowiddsral method of specify-
ing complex behaviors.

7.1 Contributions

This thesis enumerates several composability requirements that must beddiebre policies
can be composed in the hybrid control framewayldomains lie completely in the free state space
of the systemii) the system must reach the designated goal set in finite tilnender influence

of a given policy the system trajectory must not depart the domain exé@eptspecified goal set,
andiv) the policies must have efficient tests for domain inclusion given a known 3fdtde not

surprising, these requirements guide the evaluation of specific policyndesigd suggest tests to
validate a specific policy instantiation.

New tests are developed in order to verify that the local feedback posiatesy these compos-
ability requirements. The thesis develops an approach to verify that thg pgolicains are collision
free without constructing the free configuration space. Our apprabhsed on expanding the
policy domain to account for the body extent, and then testing the projectionviorispace for
collision. Using a discrete approximation of the cell surface, the apprsehan exact mapping to
points on the expanded cell. These expanded points are projected &paoek where the resulting
tests are trivial. The thesis presents proof of correctness for theéepaell approach to collision
testing. For the remaining composability requirements, the thesis presentgdioaligahniques
based on the specific policy designs.

This thesis introduces composable flow-through policies to the sequemtipbsition paradigm.
Flow-through policies allow the designer to put off the implications of Brockéfittorem, and de-
sign smooth time-invariant polices for nonholonomic systems over a locakregtoe constraints
of Brockett’s theorem are realized through the switching behavior of yteidh control policy.
Flow-through policies naturally encode many desired navigation behavotdntroduce added
complexity in the prepares test. The policies must now consider the full syséeewhen evaluat-
ing the prepares relationship; that is, second-order systems must digteiacvelocity test.

The standard prepares relationship between policy domains is extendiowaaolicy to
prepare a set of policies, without preparing any one policy in the set.ektesision adds flexibility
during policy instantiation to define larger goal sets, which tend to enablerlaaicy domains.
The extended set-based prepares definition introduces non-deterrnnitdghe prepares graph used
for planning; thus this added flexibility comes with a cost that must be borneoglificrete planner.
The thesis used D*-lite to address the non-deterministic transitions [81].

We have developed two families of generic feedback policies that are ablglio several non-
holonomic systems. These policies, which are detailed in the appendicesthi@foundation for
the experimental results presented in the thesis. It is important to note, thatbkcies are only
examples of composable policies. Any policy that satisfies the composabilitiyeatents may be
used in the policy composition framework.

To aid in the deployment of the policies, the thesis demonstrated an appraashitautomated
policy instantiation based on a limited cache of policies that induce basic behaAdthough
specifically applied to the policies introduced in Chapter 5, the approaciméaeand can be ap-
plied to any policy that meets the composability requirements of Chapter 3. Téie tleveloped a
technique for evaluating the relative completeness of a given suite of goliis gives a qualitative
method of evaluating one suite of policies against another.

Finally, the thesis provides several demonstrations of the coupled planmincpatrol frame-
work using policy composition. Both simulations and experiments are presesitegla variety of
system models in constrained environments. The policy composition appteaanstrates emer-
gent behaviors, such as K-turns, during simple navigation, as wellragler multi-task behaviors
governed by automata. The automata are automatically synthesized bases suitehof local
feedback control policies instantiated using our techniques. This th@sesemnts the first known
experiments with these approaches on constrained systems operating inedlatteonfined envi-
ronments.

Benefits of Policy Composition Since the hybrid control policy is based on local feedback con-
trol policies, the overall controller inherits the properties of the indivighadicies. This allows the

118 (© 2007 David C. Conner

individual policies to be tuned to local conditions, whether to provide safegnhanced perfor-
mance. The local policies, in order to be composable, have provablergemce guarantees, and
retain the robustness to disturbances that is the hallmark of feedbacklcadrtie local feedback
control policies are designed to be memoryless, and allow for real time €ddécause each local
policy has an explicit domain, the hybrid control approach is inherent. $b& disturbance takes
the system outside the domains of all policies, the robot is halted and exectiti@hybrid control
policy terminates.

By planning in the space of control policies using the prepares grapplaheing becomes very
flexible with regard to task. This approach opens the door to formal ssistb&hybrid feedback
controllers for complex systems; for example the parking controller denatedtin Chapter 6. The
approach allows analysis of the reachability of a goal, or realizability okeipation, with a given
policy suite during the discrete planning phase, prior to execution.

Using automata to execute the local feedback policies allow the systems to edmiptex,
multi-task behaviors. The approach enables tasks to be specified atlevegrand then executed
in a continuous manner, using a hybrid control policy synthesized frorsulte of local control
policies and associated prepares graph. Repetitive tasks are nata@bjed in the framework,
which allows the approach to induce limit cycle type behaviors.

Drawbacks of Policy Composition Unfortunately, the power and flexibility of policy space plan-
ning does not come for free, and it not applicable in all situations. Thigmes$ suitable policies
is not trivial. The policies must have explicit domain representations in daodguickly evaluate
the suitability of a given policy, which precludes the use of many simple discgptesentations.
Designing suitable domain representations requires insight into the systeits aonstraints, and
the environment at hand.

Given a set of generic composable policies, there is significant upgfostto instantiating and
validating the policies. This upfront cost is mitigated by two factors. First, isfltheébility of
planning in the space of policies, as demonstrated in this thesis. The secbodi$ the ability to
reuse existing deployments within a known environment.

The demonstrations in this thesis assume a static known environment. The poltbieghesis
do not adapt moving obstacles, or unknown obstacles, except in the lingisedof invalidating
whole policies within the suite and re-planning using D*-lite. This thesis doesxmore adding
policies as an environment is explored; thus, the current approach iwallosuited for initial
exploration of an unknown environment.

The approach is limited to those behaviors that are instantiated. If theretagaaugh policies
deployed, or they fail to cover a large enough fraction of the free gordtion space, the approach
may not be robust to significant disturbances. The discrete planneordpriake advantage of
policies that are previously instantiated. Thus, there is a implicit demand théésigner consider
the needs of the system during definition of the policy suite. This points to the fog more
automated methods for policy instantiation that can be applied on-line if signifitstarbances
are encountered.

The policies demonstrated in this thesis rely on vehicle pose estimates. The ofafieese
policies is dependent on accurate localization. Repeatable disturbareés tthe localization can
induced unwanted limit cycles if they violate the monotonic switching of the orggrifhe hybrid
control approach needs a supervisor to recognize and addresgothlismp.

(© 2007 David C. Conner 119

7.2 Future Work

This thesis has demonstrated the usefulness and flexibility of the policy caiop@gpproach on
real constrained systems. There remain several fruitful avenueglafration that build upon this
thesis; these include work to overcome the drawbacks mentioned abowe)las extension to
more complex systems. Several directions offer opportunities for multi-diiszip collaboration
between computer scientists, engineers, and control theorists.

7.2.1 Extension of the Basic Approach

Building on the foundation provided by this thesis, there are two areasdbdtfarther study.

Disturbance Quantification As described in this thesis, disturbances are a fact of life that must be
dealt with for any real system; local feedback policies coupled with therdydsed approaches to
hybrid policy design offer some inherent robustness to such distugba®roblems remain where
large disturbances take the system outside the domain of all policies, @tabjeedisturbances
induce undesirable limit cycles. At present, we do not have a quantifiaserigtion of when
these disturbances are “too large”, or likely to induce undesired limit cy&tebustness analysis

of the local policies, and more importantly the overall hybrid control policyarisopen area of
research. We would like to provide guarantees such that disturbairites & certain bound and
rate of occurrence will not induce undesirable limit cycles, and will remathimwthe domain of

the overall hybrid control policy.

Hierarchical Design The component policies and meta-policies represent one type of higrarch
described in this thesis. The synthesized hybrid control policies, bo#r-baked and automata-
based, are another level in the overall hierarchy. In this thesis, thatoefiof meta-policies was
strictly an engineering choice based on intuition gained by working with the coen policies.
Grouping component policies in meta-policies reduces the burden on thaéngaagorithm by
reducing the size of the prepares graph, but also limits the planning flexibildydate, we do
not have a formal method of evaluating the choices of individual compqudicies versus various
groupings in meta-policies, other than the basic computation complexity of detegrttie prepares
graph for larger collections of policies.

Another level of hierarchical design would treat a synthesized hylondrol policy as a meta-
policy within some higher-level framework. For example, the LAGR experimesmre conducted
on one floor of a building. Each separate floor would have its own deplatyofdocal policies,
with connections provided by the elevators. One option is to combine the pdliciasvery floor
into one large suite of policies, with its associated prepares graph. Anotbes scalable option, is
to treat each floor as a meta-policy, and then plan at both the floor levethandetween floors at
the hybrid meta-policy level. Determining the appropriate level of abstractidmamber of layers
within this hierarchical framework is currently aal hocdecision based on engineering intuition.

Going one step further, and considering an automata-based hybridlcpaolicy as a meta-
policy within a hierarchical framework leads to a notiorhgbrid prepareswhere the prepares test
depends on both the continuous goal set of the overall goal policy andighrete outputs of the
automaton. Thus, work remains for incorporating these tools within a laede &dly autonomous
framework.

120 (© 2007 David C. Conner

7.2.2 Extension of Policy Design Techniques

To fully realize the benefits of policy composition, additional design tools meistdveloped. The
design of the composable policies for the nonholonomic systems described thekis only re-
quired three dimensions, yet the specification of the domains required nugjhtih As the system
complexity increases along with the dimension of the configuration spaceitite @ human de-

signers to specify composable policies becomes even more challengings $edkion, we outline
several directions for research that will expand the ability to design ceaiybe policies, both for
the systems considered in this thesis and the more complex systems mentioned later.

Sensor-based Policies The policies in this thesis were based on knowledge of full state informa-
tion, which required localization. One can design policies that use seasedbneasurements to
define policy domains and goals [55, 97]. For example, consider thetfilaugh policies of [97]
that move a vehicle through a doorway using visual servoing. As longeapdlicies satisfy the
composability requirements, sensor-based policies can be readily inatagdnto our policy com-
position framework.

Value Function Approximation One of the challenges of policy design is to design a policy
domain that acts as a funnel. That is, it captures a relatively large refgiate space, but brings
the system to a relatively small goal set, allowing for simple prepares testgeldmetric approach
followed in this thesis is somewhat limited, but provides the ability to test for colligiarthe
expanded cells and test for state inclusion during execution.

On the other hand, optimal control techniques can use dynamic programniingl & value
function that corresponds to the maximal cell definition. This approacmalty depends on dis-
crete representations that lack simple inclusion tests. One natural appisesca finite set of basis
functions to approximate the value function [43]. The combination of basigifuns can be used to
quickly check for state inclusion and test for collision as demonstrated in #sssthTrhe flexibility
of the basis function approach will likely allow for the definition of more esgree cells; however,
the selection of the proper set of basis functions is something of an arconhgosability proper-
ties must be verified for the approximate function, and not for the valugiimused in the initial
optimal control problem.

Local Reactive Planning With the increases in computing power and memory, the line between
control and planning is becoming more blurred. Many systems, most notaslg garticipating in
DARPA's “Grand Challenges”, are using local planning in real time to deitez control inputs that
define certain trajectories [28]. The systems use local planning to reabstacles, while using
conventional grid based planning, or provided way points, to definegbiead! path. Assuming the
system is capable of doing this planning fast relative to the system dynah@dscal planner acts

as a feedback control policy.

This opens the door to combining local reactive planning with the policy coitospproach
at the high level. By defining cells that provide boundaries on the planaing,then planning
within the cells, the system has the freedom to react to unexpected obst#biaghe cells, while
maintaining a predictable transition between regions. One can imagine defiimbased on road
lanes, or other geographic data. Thus, the local planning can be diretilporated into the policy
composition/automata synthesis approach advocated in this thesis. Thistlopelor to formal
methods of guaranteeing high-level behaviors, while preserving thdelmi-ability to react to
unexpected changes on the local level.

(© 2007 David C. Conner 121

Another possibility is to use local planning as an exploration strategy, leutelts and policy
composition as a compact representation of free space. This allows lwotet@explore the envi-
ronment using some technique, and then share data with other robots imrtheffa suite of cells
and prepares graph. This approach would benefit from machindérigdtmction approximation
approaches to define and instantiate the cells on-line during explorati@robbt that is explor-
ing the unknown space instantiates cells and defines the prepares grapd dther robots during
execution. The suite of policies and prepares graph is a compacteatatsn of the available free
space. The suite and graph representation would also be usefutéoerang from deep dead ends
where maintaining a full cost map is impractical.

Model-based Local Control As the policy composition and hybrid control approach is extended
to systems with second-order dynamics, or complex high-dimensional systiefiring closed
form controllers will become difficult. One alternative is to use model-basattal methods, such

as Model Predictive Control (MPC), to specify control actions [42fréda finite set of control
actions is evaluated at each step, and the best performing series osastaosen. With MPC,
the evaluations are based on the outcomes of discrete simulation steps. [ioiacapis related

to dynamic programming and optimal control methods; however, here theagpis based on a
greedy finite horizon simulation. If a conservative domain representagiofe found, over which
the MPC approach is guaranteed to find a solution, MPC can be incorpantid¢he design of local
control policies.

7.2.3 Extension to More Complex Systems

The real payoff for policy composition is with more complex systems, whosarmyjcs are fun-
damental to the control. Planning methods must take these dynamics into catsideiuring

planning, otherwise the plans will not be feasible. This represents dousbpath for continued
research, but one that requires advanced policy design techniques.

Purely-Kinematic Systems with Second-order Shape DynamicsDirectly building on this the-
sis, the policies should be modified to account for second-order dynamite shape space. This
thesis only considers nonholonomic systems with first-order dynamics; theahaxtension is to
consider direct control of torques, and account for secondrondéor and inertial dynamics. This
could allow for more aggressive control techniques that accouny$tes limitations. The control
of the shape variables is fully actuated; therefore, a variety of conttbhtgues are available on
the bounded shape space.

Mixed-Mechanical Systems Another natural extension is to apply the approach to so called
mixed-mechanical systems, such as the snake-board [112]. Due to thesstimg mathematics of
such systems, recent work has focused on developing gaits for fretems; however, the work has
generally focused on open-loop control in obstacle free environmgh®s P6]. Research should
use the intuition gained from the open-loop gaits to design feedback polittesxplicit domains
and goal sets. Then, the policy composition approach advocated in this dipess up these sys-
tems to address real navigation and control tasks.

General Dynamical Systems Researchers often come up with systems with complex dynamics,
whose performance is limited by available control methods. As an examplgideosystems that
are not statically stable such as the balancing “ball-bot” and systems theayeaigle of true bipedal

122 (© 2007 David C. Conner

running via energy storage [49, 74]. Control policies for these systenss respect the system dy-
namics during any transition between behaviors. While some results haveleéned designing
controllers for very specific behaviors, it is our hypothesis that theesyswill require formal anal-
ysis of policy composition to generate useful behaviors. To switch betateeny-state behaviors,
the system must respect the dynamics and the domain of attraction of eaghdioma Thus, the
design of composable policies becomes a fundamental challenge for mosgegsystems into the
real world in a way that allows for robust behaviors and complex tagksided composable poli-
cies can be found for these systems, the various planning tools demonstrhtisdhesis allow for
planning of real world task for these systems.

As another example, consider today’s humanoid robots. The zero-m@aientontrol (ZMP)
approach is based on keeping the robot in a stable configuration assteensyioves [54]. This
limits the behaviors of the robot, as the system cannot pass through antanséable configura-
tions. The formal policy composition approach offers a chance to extendapabilities of such
systems by designing composable control policies for different regibtieeaobot’s state space,
and formally composing them using synthesized automata. Hybrid controlgsotian be used to
induce cyclic behaviors such as walking or running that are more esipeesvhile enhancing the
performance and safety of the system. The automata will be used to switchdmebghaviors,
such as balancing, walking, running, kicking, and climbing, based onyftera’s instantaneous
state, while reacting to the systems hybrid dynamics induced by intermittent tomtee key is
to develop approaches to synthesize the hybrid control policy automatioadyyay that provides
formal guarantees across the state space of the system. Analyzingtéma $ys“composability”
may also lead to insight into designs that simplify the control design by the additipassive
elements that remove or add energy at certain points in the state space.

7.2.4 Extension of Planning Tools

The demonstrations provided in this thesis highlight the power and flexibilityeoptiticy compo-
sition approach. They also point to several shortcomings that shoulddressed in the discrete
planning domain. Addressing these issues will increase the power of lisg pomposition ap-
proach for the policies and systems described above.

Sensor Automata and Composition The automata synthesis approach described in Chapter 6
depends on sensors that provide binary signals to the automata duriimgeurs with the ‘Hazard’
sensor, these “sensors” are often hybrid automata in their own rightisT ltlee binary sensor values
depend on a mixture of continuous variables and discrete logic. Definiag #emsors is currently
done on arad hocbasis. Technigues are needed to synthesize these sensor automatavand
that the composition of multiple sensor and control automata are valid, aneryedabe desired
specifications and liveness conditions. An example, taken from the simdatiaghis thesis and
the DARPA Urban Grand Challenge (UGC), is the need to resolve preceds intersections and
four-way stops. Formal synthesis methods coupled with local policy catigposffers a way to
automate what is currently a labor intensive, error prone processideneed by the failures of
most of the teams that entered the DARPA UGC.

Formal Recovery Methods and Global Synthesis Disturbances are a fact of life. Thus, the
automata synthesis should include all available policies to maximize the domain bigr the
automata is valid, and have a formal method of recovery. For the repetiéivaviors, such as
patrolling, demonstrated in this thesis, it is sufficient to augment the automatarwised policies,
and then search for a node that had the correct discrete senss aallierhose associated policy

(© 2007 David C. Conner 123

contained the current pose. A more complex scenario, such as the mairgebbot, will require
a more formal recovery approach to allow the system to recover gicedistead of anad hoc
approach, a formal and automated approach to defining a recovepgstimdesired. The recovery
approach should also include all policies to maximize the domain.

Automata Synthesis with Heuristic Costs A major shortcoming of the automata synthesis ap-
proaches demonstrated in this thesis is that they do not consider heurisc &tithin a given
policy suite, there may be many policy combinations that will address a givaraso. In fact,
this is desirable for maximum planning flexibility. The synthesis approachsntebe able rank
different policy choices based on their relative cost. Current tecksiqaly consider the number of
transitions made, that is the number of edges traversed in the graph wailk,clvbosing policies.
The focus of current techniques is on dealing with the state explosiotepnalsing efficient data
structures such as Binary Decision Diagrams (BDD) [20, 23]. Thesebkan some work in com-
bining BDDs with heuristic search; for example, consider the A&} approach [52]. That work
may prove fruitful for automata synthesis research.

Automata Synthesis with Non-deterministic Outcomes The automata synthesis used in this the-
sis only considered deterministic prepares graphs. This eliminated the theeedttended prepares
relationship. There has been some work on defining sequence baseddapes which allow non-
deterministic prepares graphs [62]; however, the synthesis techrfmuesactive automata do not
allow non-deterministic transitions at this time.

Automata Synthesis with Hybrid Stability Analysis The stability of the order-based hybrid poli-
cies is based on the assumption of monotonic policy switching. With automata, linhiscgre
allowed. In the hybrid systems community, it is well known that switching betvatainle vector
fields can induce instability [13, 30, 79]. While this is not an issue for therkai& systems ad-
dressed in this thesis, stability analysis will be fundamental to more complexrsysiehere are
several approaches to analyzing the stability of existing hybrid system3(Q139]; however, going
in reverse, the synthesis problem must address this issue during ctinstru

To conclude, this thesis advocates an approach to specifying roktoblbens that respects low-
level constraints by design, and provides a natural interface foifgipepruser intentions. Low-level
feedback control policies induce local behaviors in a guaranteed maihe user interacts at a
high-level to specify intended behaviors. The robot then automaticallfhegizes a hybrid con-
trol policy that can realize the intention, or reports that the goal is not eddéizfor the current
collection of policies and initial condition. The hybrid control policy inherits thesirable prop-
erties of the local feedback policies, while guaranteeing the high-leveMiars. This approach,
which is demonstrated on a class of nonholonomically constrained systemstimetiis is widely
applicable, and likely necessary for the dynamically capable robots ofitheef

124 (© 2007 David C. Conner

125

Appendix A

Modeling Framework

This appendix provides a detailed presentation of the modeling framewedkinighis thesis, and
sets the notation used throughout the document. In addition to definitions oflévant terms,
we provide detailed derivations of the models used in the examples. Firstpgiesdix provides
a generic description of the environment and notation for the genericaterigproblem. Within
this context, the distinction between workspace, configuration spacstatedspace is highlighted.
Next, the section presents the model used for nonholonomic Pfaffiatraions. The appendix
continues with a discussion of the geometric relationships among configuvatiiaibles and the
nonholonomic constraints. Finally, the section concludes with the presentdtiba specific sys-
tem models used in this thesis.

A.1 Work space, Configuration space, and State Space

The robotic system consists of a single body that navigates through a glarisonment that is
cluttered with obstacles. The planar environmentworkspaceis a bounded subséy ¢ IR2.
To address the navigation problem, the robot body must move along a patbabhes the overall
goal, while avoiding obstacles along the way. For this thesis, the obstacles wotlspace are
represented as the union over a finite set of convex redions C W, whereOy, denotes thé:*™"
convex obstacle. The obstacles are assumed to be in a known fixed location

Oo

b
o |

Wo

Figure A.1: Representation of planar workspace with five obstaclesabat.r The workspace
frame is denoted?); the body pose relative td/; is denotedy = {z,y,0}. The body occupies
R (g) € W. The workspace boundary is denoted &s

Letg = {z,y,0} € G = IR? x S! denote the bodpose which is the position and orientation of
a body fixed reference frame relative to the world frame. This relatiornistgpown in Figure A.1.
Let R (¢g) C W denote the two-dimensional set of workspace points occupied by theahqise
g- Thus, for all body poseg, along a collision free path,

R(g)() (ijok> =0.

For this thesisR (g) is assumed to be a convex set that is fixed relative to the body referance f
of the robot.

To fully specify the robot, certain internal variables must be specified ditiad to the body
pose. These internal variables are referred tshagpevariables, as they are typically internal vari-
ables such as wheel rotations, steering angles, or joint angles [IT1&4, the robot configuration
is fully specified ag = {g,r} € Q@ = G x R, wherer € R denotes the shape space @adenotes
the configuration space of the system. The shape sRacgy or may not be bounded. The free
configuration space, denoté&d,..., is the set of all collision free configurations; that is

Ofree = {QZ{Q,T}E Q|R(g)ﬂUOk:®} .
k

The configuration evolution is governed via inputs to the system. The reldtioput to con-
figuration velocity is specified by the equations of motion for the system; tltpggiens of motion
must be derived for each system. There are two fundamental classgsteis. Fokinematic
systemgsthe control inputs: € U directly control the configuration velocities; thatjis= f (¢, u).
Thus, for kinematic systems there is a first-order relationship betweenanputelocity such that
f:QxU — T9,where7 Q represents theangent bundlef the configuration space. The state
space of the system is simply = Q.

In contrast, the inputs fosecond-order dynamicalystems specify the system accelerations,
which effect velocities via integration; thatgs= f(q, ¢, «). The mappingf : 7O xU — TTQ,
between input and velocity/acceleration is a generally non-linear functistate. To fully specify
the motion of the system, both the configuration and its associated velocitiesergpstdified; thus,
the stateof the second-order systemAs= {q, ¢} € 7 Q.

For both kinematic and second-order systems, the equations of motionkyivtee nonlinear
function f is derived from the system constraints. Givérnthe control problem is to specify con-
trol inputsu € U such that the system moves along a collision free path and reaches th# over
goal while respecting any configuration space bounds. To be a validototine inputs must be
chosen from the bounded input spd¢e Thus, solving the navigation problem requires solving a
constrained non-linear control problem. The nature of the constraints reettt topic.

A.2 System Constraints

This thesis considers several classes of constraints, including inpotbovelocity bounds, con-
figuration bounds, and nonholonomic constraints.

The most basic constraint is an equality constraint on some configurati@bleah(q) =
constant. For these constraints, the evolution of the system evolves on a sub-fdafitbe con-
figuration space defined by the constraint. In this case, the dimension adnfiguration space is

126 (© 2007 David C. Conner

reduced, and one only needs to consider the remaining configurati@ametrs. In this thesis, all
of the systems are reduced to the minimum number of configuration variables.

The second type of constraint is an inequality constraint of the fofg < 0 or h(q) > 0.
Obstacles are in this class of constraint, as are steering limits. These sussira typically hard
mechanical limits; therefore, the control policy should avoid the constraifaces.

Inequality constraints on velocities are generally bounds imposed by actimii@ations or
safety considerations. A common limitation is the maximum speed output by motass pdt-
missible to approach this type of limiting surface. Other constraints may be imbyssdfety
considerations, whether due to externally imposed speed limits or internal limgali@to vehicle
dynamics. As a latter example, the turning rates may be bounded at higleesspeprevent roll-
over. Whether velocities or torques, the actuator input space is bobgdecbllection of inequality
constraints.

The final constraint we consider is an equality constraint on velocitiesthegss is only con-
cerned with so calledfaffian constraints, which are linear in the velocities [1, 87, 94]. Pfaffian
constraints, which have the fora{q) - ¢ = 0, are able to express the velocity constraints inherent
in wheeled vehicles. The constraints dictate that any valid velocity must lie iruthspace of the
constraints; the constraint null space, which represents the set afsalibfe velocities at a given
configuration, is called theonstraint distributiondenotedD,,.

Pfaffian constraints are classed as eith@lonomicor nonholonomic Holonomic constraints
have an equivalent configuration constraint of the fdrfp) = 0; holonomic Pfaffian constraints
are said to be “integrable.” Nonholonomic Pfaffian constraints are saigltoi-integrable because
they do not have an equivalent configuration constraint, and thetefomot reduce the dimension
of the configuration spaéeThelLie Algebra Rank Condition (LAR®@st provides a convenient test
over the constraint distribution to see if a particular set of Pfaffian cainssris non-integrable, and
hence, nonholonomic [1, 87, 94].

For a brief example, consider the kinematic unicycle model commonly used aticsb The
system configuration is given by the pose, hegce {z,y,0}; there are no shape variables in
this model. The system is constrained such that its sideways velocity is z&faffian form, this
constraint is ‘

X
[sinH —cos b O] |yl =0.
0
The commonly used basis for the null space, represented as matrix colamns,

cosf O
A(q) = |sinf 0f . (A1)
0 1

Treating our inputs as = {v,w} € U, the forward velocity and turning rate respectively, we have
g = A(q) - u. Thus, the nonholonomic constraints are used to derive the equationstiohmo
Stated differently, the columns of (¢) span the constraint distributiah,. Given bounds on the
input space/, the set of reachable velocities in, is likewise bounded. If rate of turning is
bounded, the unicycle model is often referred to as “car-like” in the liteedd20].

Notice, that the kinematic unicycle is under actuated; only two inputs are usetml| three
configuration variables. The LARC is used to verify that these two inputsLdfieient to guaranteed

Technically inequality constraints are also “nonholonomic” constraintsweureserve the term for non-integrable
velocity constraints [87].

(© 2007 David C. Conner 127

controllability with respect to the full configuration space [1, 87, 94]. @hehe fundamental
difficulties in controlling nonholonomic systeriss dealing with the effects of this under-actuation.

To assist in the analysis and control design, we now take recourseédcediffal geometry and
geometric mechanics, and use the languag#bef bundlesand connections This allows us do
define specific relationships between the body pose and the shapdesariatile the remainder of
this appendix focuses on the nonholonomic constraints that determine #utoegwof motion, the
reader should keep in mind that any real system is subject to other hauimdh act to limit the set
of achievable velocities/accelerations.

A.3 Fiber Bundles and Connections

This section presents a brief overview of the fiber bundle concept elsiies to the nonholonomic
systems encountered in this thesis. For a full treatment, the reader igdei@ff]. This subsection
provides an abstract overview of the terms, the ideas are made concigigandix A.4.

Consider a decomposition of the configuration space into two subspacdspeted in Fig-
ure A.2. These spaces are referred to as the pA$end fiber spacegF’). Given a projection
7 : Q — B, the fiber ath = 7 (q) € B is defined ag’ = 7~! (b). Locally, Q = F x B; if
this is true everywhere, the@ (F, B,) is atrivial fiber bundle If the fiber is homeomorphic to a
groupG, thenQ (G, B, r) is called a (trivial)principal fiber bundle The configuration spaces of
mechanical systems are trivial principal fiber bundles [112].

For systems considered in the proposed thesis, the configuration vatiadéiere directly con-
trolled define the base space and the gr6uis a Lie group corresponding to rigid body motion.
For most of the systems in this thesis,= SE(2), whereSE(2) is the Lie group manifold cor-
responding to the body pose. This thesis abuses notation slightly by ggsingpresent either the
local coordinategz, i, §) € IR? or the group element if £(2), andg to represent either the local
IR? chart orSE(2). The form being used will be clear from context. The base variablesspond
to theshapevariables described in Chapter 5 [96].

The real power of this geometric analysis comes with second-order sygtentertain second-
order systems, the equations of motion may be reduced to second-oud¢oeq defined only on
the base variables [1, 90]. Not only does this reduce the dimension oétload order equations,
the resulting control on the base space is free of nonholonomic diffdrentiatraints. The fiber
velocities are reconstructed from base velocities using the connectiaoh waturally satisfies
the nonholonomic constraints. While these second-order effects amxplotred in this thesis,
the formalism provides useful insight into the connection between the inpdtshanbody pose
velocities. The analysis will also form the basis of future extensions of te&dls work to second-
order systems.

The relationship between motions on the base space and motions along the fjbeerned
by aconnectior[1, 90]. The concept of a connection is quite general, and can befoissgstems
with non-trivial momentum effects between the base and fiber spacesnmao example in the
literature is the snake-board [96]. This thesis is restricted to sinmpiesly kinematicsystems, so
named because the connection encodes a linear first-order (kinematitt)ahaply depends on the
configuration of the system, and not the velocity. We defer the formalitiefiruntil later in this
section, after the necessary preliminaries are defined.

%It is the constraints that are “nonholonomic”, but we will follow the literatarel refer to systems subject to non-
holonomic constraints as “nonholonomic systems.”

128 (© 2007 David C. Conner

Figure A.2: Base-fiber decomposition of configuration space. (Couiks Shammas)

A connection,A : 7,90 — 7,F, projects arbitrary velocities onto the fiber tangent space
Define thehorizontal spacéior, = kernel (4,). For an arbitrary vectoX, in 7,Q, the horizontal
part isX(? = X, — A(q) - X,. Thevertical component lies in the fiber tangent spafH. Given a
local trivialization of the fiber bundl® = G x Q/G, let the coordinate§g, r) represent the fiber
(group) and base components [1]. For an arbitrary tangent vecdtdineleomponents in the local
trivialization be denoted by,). The connection is represented in local coordinate$ asw* 8‘;
(using summation notation), where

w? (q) = dg* + A% (r,g) dr®. (A.2)

The vertical projection is locally given big®,) — (¢* + A% (r, g) 7*,0). Locally, the horizon-
tal projection is given by(¢®,7*) — (=A% (r, g) 7, 7*). The term—A% (r, g) 7 represents the
components of motion along the fiber group that are induced by motion in teespase.

For purely kinematic systems, the number of independent nonholonomitcaotsis equal to
the dimension of the fiber space. If the horizontal space is defined to berthaint distributiorD,
that is the set of admissible velocitiék, = hor,, then the connection one-fora(g) is uniquely
determined by the nonholonomic constraints [1, 112]. The base variai@afiractly controlled
such that = f (u) or# = f (u). Then, given the base velocitiésthe fiber velocities are uniquely
determined by)® = — A2 (r, g) #%; in this thesis, we will use a more compact notatjoa A (q) 7.
Note that even though the systems are called plkiglgmatic the system can have second order
dynamics on the base space.

3Here we follow the literature and abuse notation to ds&s both the Pfaffian constraint distribution and the derived
connection [1]. The reason for this abuse will become apparent.
“Note, horizontal and vertical are somewhat misleading terms, the se®@not orthogonal for constrained systems.

(© 2007 David C. Conner 129

The connection provides a convenient form for deriving the equatibmtion; unfortunately,
the constraints of some systems (e.g. the Ackermann steered car) dovadhbasimple form
given in (A.2). This makes determining the connection more difficult. To simplifg, concept
of a principal connectionis introduced. The principal connection requires that the system have
certain invariance properties, symmetrie$l, 90]. The formal definition requires some additional
terminology related to the fiber Lie group.

Recall, that gprincipal fiber bundleis a fiber bundle such that the fibeFs = 7! (b) are
everywhere homeomorphic to a structure graufil]. Given a projectionr : Q — Q/G, where
Q/G corresponds to the base spdg¢eandQ = Q/G x G everywhereQ (Q/G, G,) is a trivial
principal fiber bundle. For a point in the configuration spaee (h, r), with h € G andr € B, the
left action of a group elemente G corresponds to motion along the fiber givenlag = (gh, r).
The right action is given by?,q = (hg,r). The Lie algebrag, of the Lie group is the tangent
space at the identity element, thatgis= 7.G. The lifted actionT,®, (v,) onv, € 7,Q gives
the vector atb, (¢) obtained by parallel transport of by the action®,. The short-hand notation,
g~ 'g, is used to represent the actispL, - (), which returns the velocity in body coordinates,
¢ = g71g € g. The infinitesimal generator of the action corresponding te g, denotedt,
generates a vector field ov@raccording t&¢ (h) = % (exp (&t) - h) |i=o forall h € G. For trivial
principal bundles¢c (h) = T.R& [90]. Ata given pointy = (g,7) € Q, §g(q) = (TeRy (£),0).
The adjoint operatorAd, : g — g, is given byAd, = T,-1L,; o T.R,-1. The group orbit is
Orb (¢) = {gq | g € G}; the orbit is an immersed sub-manifold. The orbit tangent space is given
by the generators at the point; thafZigOrb (¢) = {{c (¢) | € € g}

Each of these abstract operators has a concrete representatipstéonswhose structure group
G is SE(2). An element of the groug, € SE(2), is represented as3ax 3 matrix

sinf cosf yl| € SE(2).

cos@ —sinf =z
g =
0 0 1

Elements of the group represent both body configurations and rigidrnotlgns on another group
element. The composition of two elements is simple matrix multiplication. Thug, foe SE(2),
Lsh = gh andR;h = hg. The body velocitye? = [¢, &y gw]T is represented as a Lie algebra

element by the matrix
0 _gw f:r
§ = {w 0 gy 656(2> .

0 0 0

The velocity in world coordinates is given lgy= ¢g£. As in the literature, we will intermingle the
use of 3-tuples to represent elements of the matrix Lie group and algeluen /G= [h,, h,, h@]T €

130 (© 2007 David C. Conner

SFE(2), the group actiorL, , whereg = [z, y, 6], yields

[cos® —sin@ x| [coshy —sinhg hg
Lsh = sinf cosf y sinhg coshg hy
0o 0 1] | o 0 1
[cos (0 + hg) —sin(0+ hy) @+ hycosd — hysinf
= |sin(@+hg) cos(8+hy) y+ hysin€+ hycosb (A.3)
0 0 1

[12

Yy + hgsinf + hy, cos 0
0+ hy

[+ hy cos @ — hysin 0]

To obtain the mapping for the lifted actidh, L, : 7,SE(2) — T,,SE(2), we differentiate the
vector form ofL,h with respect to the group coordinates to yield

oL cosf —sinf O
TyLg = { 8—}: } = |sinf cosf O (A.4)
! 0 0 1
Similarly, the lifted right actior¥, R, : 73, SE(2) — Try,SE(2) is given by
1 0 —ycoshy— xsinhg
ThRy;= |0 1 axcoshg—ysinhy (A.5)
0 0 1

For matrix groupsAd, (&) = gég~!. Forse(2), the matrix that encodes the adjoint operator is

cosf) —sinf y
Ady = [sinf cost —x| . (A.6)
0 0 1

This matrix operates on the vector form&f

Given these Lie group and Lie algebra actions, we now return to defingngrthcipal connec-
tion for purely kinematic systems.

A principal connectionA, is a mapA : 7,Q — se(2) such that

Aléole)) = & VE€€g,qeQ
A(Ty®4(vg)) = AdgA(vg).

[1]. This last property requires that the principal connection is invatader the group action.
The horizontal spacef the connectiond atq € Q is hor, = {v, € 7,Q | A(vy) = 0}, and
7,9 = hor, @ ver,. Thus, fory, € 7,Q we have the decompositiary = hor,v, + ver,v,, Where

vergug = (A (vg))g(y) - (A7)

From the definition of an infinitesimal generatoA (vq))g(q) is the vector ay generated by
the Lie algebra elemend (v,). The horizontal part of, is given ashorgv, = v — (A (vg)) o
The connectiom is related to the principal connection 4§v,) = (A (vq))Q(q).

q)’

(© 2007 David C. Conner 131

The principal connection provides a simple method of determining the connddfio The
connection in the local trivialization is

A(g,7) = Ady (TyLy—1g+A(r)r) , (A.8)

whereA represents the local connection determined by the constraints at the idétieygyoup.
Appendix subsections A.4.2 and A.4.3 provide specific examples of thes® ide

Given these preliminaries, we may now define the class of systems used ireliss #princi-
pally kinematic systens a system where

e the tangent spacg,Q is the direct sum of the constraint distributiéh, and the tangent to
the group orbits; that i%,Q) = D, + T,0rb (g).

e D,NT,01b (q) = {0}.

e the Lagrangiarn., the difference between kinetic energy and potential energy of thensyste
is invariant under the group action 6fon7 Q.

e the constraint distributio is invariant, that is givelD, C 7 Q thenT, D, = D, C T4,9Q.

The first two conditions apply to purely kinematic systems. The constrainiddistm, D, defines
the horizontal space for the connection; the group orbits define thealespiace. Together they span
the configuration tangent space. As stated earlier, this choice uniguesifiep the connection.

The last two conditions specify the invariance properties that differeriigtt@eenprincipally
kinematicand purely kinematicsystems. In the literature, the terms are often used interchange-
ably [1]. In this thesis, we will make a distinction between the two terms, as in 98] principally
kinematic system is purely kinematic; but the reverse is not true. In Appendi® we provide an
example of a system that is purely kinematic; that is, it has a kinematic mappingdrebase and
fiber velocities, but lacks the invariance properties and is therefore @ Tipally kinematic.

The remainder of this appendix presents detailed derivations of the emgiafimotion for the
systems used in this thesis.

A.4 Examples

A.4.1 Vertical Rolling Disk (Unicycle)

The kinematic unicycle model presented in Appendix A.2 did not have a lzasble, and hence,
does not fit into the fiber bundle framework. However, by consideriagatation of a drive wheel,
the model does fit. This more complex model, calledwesical rolling disk is suitable for mod-
eling second order dynamics where the accelerations are the contrtd,iapd not{v,w} as in
Appendix A.2.

Consider the example vertical rolling disk shown in Figure A.3 [1, 90]. Tibk shoves over the
plane, with a configuration space $(2). We represens$ F(2) using a local chartz, y, 0) C IR,
where(z, y) are the coordinates of the point of contact on the planefaadhe orientation of the
disk with respect to the-axis of the plane. The angle of rotation about a horizontal axis through
the disk center, with respect to the verticalyisLet the local configuration be given as the vector
g=[z y 0 q,z)}T. The system is controlled by (imaginary) motors that provide torque aloiit b
the vertical and horizontal axes of rotation, which provides contrélafid« directly. Therefore,

132 (© 2007 David C. Conner

Figure A.3: Vertical rolling disk with(#, ¢)) as base variables.

the base variables are designatedéas), with projection

0-[p 08

The fiber variablesx, y), are a group under the action of translation.
The disk rolls without slipping, which constrains the instantaneous velocithefpoint of
contact to be zero, and yields the following constraints

i— R cosd = 0, (A.9)
y— Ry singd = 0. (A.10)

In Pfaffian form, the constraints are

1 0 0 —Rcosf| .
010 —Rsing| 477 (A-11)

For this simple system, we can rewrite (A.9) and (A.10) to obtain equations fikaif\ the re-
lationship between the base variable velocities and the fiber velocities, R cos (6)) and
y = Rsin(0) ¥. Thus, given a specification of the base velocity,and base variablé), the
evolution of the fiber is strictly first order; that is the fiber variables areriatic with respect to
the base variables. This is the fundamental nature of purely kinematic systems

While the equations of motion are easily derived for this simple case, we willedite con-
nection from first principles to illustrate the base/fiber paradigmglzet{ i, 9, 6,v ¢ € 7,Q be an
arbitrary velocity vector. The Pfaffian constraints for the vertical roltirgk, given in (A.11), have
the simple form given in (A.2). The corresponding connection one-fammoeordinates are

w; = dx— Rcosfdy
wy = dy— Rsinfdy

The components of the local connection are extractedias —R cos and A3 = —R sin 6; the
remaining terms are zero. The horizontal part of the arbitrary velocitipvée
hor,q = [RQ/)COSQ R¢s1n0 0 w]T

(© 2007 David C. Conner 133

, and the vertical part is
veryg = G —horgg = [& — Ripcos® §— Repsing 0 0] .

Note that the horizontal vector, as given, obeys the Pfaffian constrahereforehor,q € Dy,
the constraint distribution. Thus, the horizontal part, which encodes thi@minduced by the
base motion, is inherently consistent with the constraints. The vertical paoties any remaining
portion of the arbitrary velocity that is inconsistent with the constraints. Ténsaining portion
represents the group action independent of base motion that occugstiadofiber tangent vector;
such independent motion may be due to a disturbance beyond the systieoh con

Formally, the connectiod : 7,Q — 7,F is used to define the horizontal and vertical spaces. In
this thesis, we are mainly concerned with the mapping between base veloaditifisearvelocities,
where the base velocities are driven by the system inputs. Thus, we abtaion an usel (¢) :
7,B — 7,G to denote the more compact mapping where the terms are taken directly from the
connection. For the vertical rolling disl,= A (¢) 7 with

0 Rcosb
A(q) = |0 Rsinf| . (A.12)
1 0

Note the similarity to (A.1) if we leb = Ry andw = 6.

A.4.2 Differential-drive System

A common mobile robot platform is a differential-drive system. The body ofadhet is driven by
two independently controlled wheels. By controlling the relative speedseeetthe two wheels,
the system can control both its forward velocity and the rate of body rotation

The body of the robot moves across the plane, with a configuration sate(2). Locally,
we represenS E(2) as(z,y,0) C IR?, where(z,y) are the coordinates of midpoint of the line
connecting the drive wheel centers, ahis the orientation of the body with respect to thexis
of the plane. This arrangement is shown in Figure A.4. The angles of notattithe drive wheels
about a horizontal axis through the wheel centers is dengteahd+ z, whereL and R denote the
left and right wheels relative to the body heading. Positive rotation moeegethicle forward. The
local configuration iy = [z y 6 wR]T € SE(2) x St x St

The vehicle is subject to four nonholonomic constraints, three of whicmdependent. Each
drive wheel is assumed to roll without slipping and is prevented from sligidigways relative to
its instantaneous heading. The sliding sideways constraints are redutrd&faffian form, these
independent constraints are

sin@ —cosf O 0 0
cosf sinf —c —R 0 |-¢g=0.
cosf sind c 0 —R

These constraints are not in the simple form given in (A.2). While it is possibtierive these
equations of motion using algebra, we will take recourse to the principalemtion. We first

134 (© 2007 David C. Conner

Figure A.4: Differential drive robot with two drive whee{g1,, ¥r } as base variables.

rewrite the constraints at the fiber identity element as

0 -1 0 0 0 ¢

1 0 —c —R 0 |- [] =0.

1 0 c 0 —R

Using simple algebra, these constraints are equivalent to
0O -1 0 O 0 ¢
1 0 o -%& & H = (A.13)
R R r
0 0 1 5 -5

= e

The constraints in (A.13) are in the simple form given in (A.2), which allowsoudirectly write
—BAL =8 A2 =0,A% =0,A} = £, andAj = S5, or more

the connection termal
(A.14)

compactly as

2c
Given this unique specification, (A.7) and (A.8) determine the projection ial lo@ordinates

onto the vertical spaceer,; this yields
verqvg = verg (¢,7) = (TeRg (Ady (TyL,~1g+ A(r) 7)) ,0)

The principal connection for the diff-drive system is
r R R
cosf —sinf y & cosf + y sinf —3 T3y,
A(g,7) = |sinf cosf —=x gy cosf —zsinf| + | 0 0 [1/1 }
) R R R
| 0 0 1 0 2 £
(& +yb cosf —sing y | [-H —£&7 v
= |y—xz6| + |sinf cosf —=x 0 0 [(A.15)
6 o o 1||E -—r|lY
135

(© 2007 David C. Conner

In se(2), the generator operator is

1 0 —y
TeRy =10 1 x| ;
0 0 1
therefore, the vertical component is
verqug = {TeRyA(7,§),0}
_ . A . R R
10 —y i+y0 Cf)Sg —sinf vy —3 2y,
01 =z y—x0| + |sinf cosf —x 0 0 .
= |lo o 1 o 0 0o 1]k _g|lnr
0
L 0
BES —%cos@ —%cos@ .
. . j YL
Y|+ —5sinf —5sind [@Z}}
_) 2% _2% R (A.16)
0
i 0
and the horizontal part is
horgv, = vy — A(7,9)g (9)
[@ T —%cos@ —%cose ¢
@'{ Y —%sinﬂ —%sin@ [~L}
— || 1o i "k | W (A.17)
YL 0 0
YR 0 0
rr R R
5 cos 5 cosl .
& & YL
~sinf & sinf ;
_ >R R [wR]
- 2c . 2c
UL
L YR
_}; cos 6 gcosﬁ
R R
sinf <sind .
_ |r &k [%L}
2¢c 2c
0 0 YR
| 0 1

As this horizontal vector encodes the admissible velocity induced by thevieassties, we will
abuse notation and let (¢) represent the uniqukorizontal lift from the base velocities to the
configuration velocities derived from the Pfaffian constraints.

For diff-drive this thesis useg= A (¢) 7, with

g cos % cos b
A(q) = % sin 6 % sinf | . (A.18)
_R R
2c 2c

136 (© 2007 David C. Conner

A.4.3 Ackermann Steered Car-like System

Consider the rear-wheel drive system shown schematically in Figur@a AHiis car-like system
has four wheels in contact with the ground. The model used in this thesieegbody dynamics
and the effects of tire/ground interaction, and assumes that each wbkslwithout slipping or
sliding sideways. The two rear wheels provide the motive force via tractitimtiae ground, while
the two front wheels provide steering. The vehicle body moves in the pangaates about the
instantaneous center of rotatignc.r.), which lies at the intersection of the perpendicular bisector to
each wheel. The rolling without slipping constraints force each wheeliéberat slightly different
speeds according to the distance from the i.c.r. The angle of each fha g slightly different
so that the bisectors intersect the rear axle line at the i.c.r. This type ahsgtesalled Ackermann
steering, prevents slipping of the wheels, which increases drag amohgyeéthe tires.

Typically a single motor provides torque to both drive wheels, and the anggilacity of each
drive wheel is related by a set of gears called diféerential To simplify the model, this mo-
tor/differential pair is modeled as a single drive wheel located along the hzedleof the vehicle,
as shown in Figure A.5-b. This imaginary wheel rotates about its axle bypgle @. The steering
angle of each wheel is controlled by a single steering wheel, with a mechénkage coupling
each front wheel. In the simple model, a single front wheel, with a steerigke a@n is used to
represent the steering input. Because the distalicketween contact points has not changed and
the i.c.r has not changed, the motion of the two-wheeled vehicle is kinematicailyatnt to the
motion of the four-wheeled car-like vehicle.

The configuration space has two parts. Locally the body pose is givenbyz, y, 0}, where
(z,y) is the location of the midpoint of the rear axle with respect to a global codeJiaadd
is the orientation of the body with respect to theaxis. The body pose evolves on thd(2)
manifold. The configuration of the drive wheehisc S'; and that of the steering wheeldsc I =
(—max, Pmax), @ bounded interval. Thus globally, the configuration spageis SE(2) x S! x 1.

The rolling without slipping or sliding constraints give three independenstaints. Both the
front and rear wheels are prevented from sliding transverse to thegrdiliaction, which gives

Zsinf —gcosh =0 (A.19)

a) Car-like system with Ackermann steering b) Simplified model

Figure A.5: Car-like system with Ackermann Steering. The figure on the rggresents an equiv-
alent simplified model.

(© 2007 David C. Conner 137

and
isin (6 + ¢) — g cos (0 + ¢) — LB cos ¢ = 0. (A.20)

The rear drive wheel is assumed to not slip along its rolling direction, thatieeis not spin freely.
This gives a constraint of _
Zcosfh + ysinf — R = 0, (A.21)

whereR is the drive wheel radius. These are Pfaffian constraints, and mapbesented as

sin 6 —cosf 0 0 O
sin (@ +¢) —cos(@+¢) —Lcos¢p 0 0f-¢=0,
cos sin 6 0 —-R 0

whereg=[i gy 6 ¢ ¢] .
Car-like systems are often modeled using a drift-less kinematic model, whedeitbevheel
configuration is dropped. The rear forward velocity,is specified as one control input, and the

steering ratey, is the second input. Fgr= [x y 0 qﬁ]T, the model becomes

cosf 0
. sin 0 0
4= |tang | VT 0 w. (A.22)
L
0 1

With this model, the control vector fields in (A.22) annihilate the constraintsigivéA.19) and (A.20).
With the kinematic model, the constraint in (A.21) is implicit. This is the model for ca&rdiks-
tems given most often in the robotics literature [72, 94]. Straightforwadalitzdions show that this
drift-less model is small-time locally controllable [94]. Although simpler, this modsésosome
modeling freedom, specifically that of considering dynamical effects.s,Tthis thesis considers
the more general purely kinematic model.

Returning to the full configuration spac@ = SE(2) x S! x I, we note that the drive and
steering angles are controlled, so let the base spaeeS! x I and the fiber spacg = SE(2).
Unfortunately, the system constraints lack the simple form give in (A.2), wprevents us from
directly defining the connection as in the first example.

It is possible, from inspection and some careful algebra, to derivedbengposition without
recourse to the principle connection. We present that result herewothkdorm, and then derive
the connection from first principles using the connection. For an arpitedocity vectory, € 7,9,
can be decomposed as

_Rz/}cosﬁ- i — R cosb

&
Y R sind y— Risind
Vg = 9 = %1/) tang| + [0 — %¢ tan ¢ | = horvg + ver vy, (A.23)
v v 0
$ o 0

the horizontal and vertical components [59]. As a purely kinematic systeemhdhizontal part
obeys the constraints, with the fiber velocity portion given as a purely kiiemadation with the
base variable velocities.

138 (© 2007 David C. Conner

Using first principles, we now derive the connection formally. At the graentity element,
the constraints given in (A.19)-(A.21) for the car-like system are

y=0, (A.24)
ising —ycosé — LOcosp =0, (A.25)

and '
&t — Ry =0. (A.26)

Substituting (A.24) and (A.26) into (A.25), and simplifying we obtain
é—%¢tan¢=o. (A.27)

Taking (A.24), (A.26), and (A.27), which all have the simple form giveArR), the local connec-
tion A (r) is given by

-R 0
A(r) = 0 0
—% tang 0

Given this unique specification, (A.7) and (A.8) determine the projection &l lowordinates onto
the vertical spaceer,; this yields

vergug = verg (9,7) = (TeRy (Ady (TyLy—1g+ A (r)7)),0) .

The principal connection for the car-like system is

[cosf® —sinf gy % cosB + v sinf —Rv)
A(g,7) = |sinf cosf —x Y cost — @ sinf| + 0
0 0 1 0 —84 tang

= y—i-(%xt‘an¢—‘Rsin9)¢—x9'
i 0 —) tan¢

The generator of the connection specifies the vertical vectar(), the generator operator is

1 0 —y
01 z=|.
00 1

(A.28)

(& — (R COSH+§ytan¢)@Z}+y9]

T.R, =

(© 2007 David C. Conner 139

Therefore, the vertical component is

verqug, = {TeRgA(r,g),0}

[[1 0 —y Eb—(Rcos@%—%ytanqﬁ)?ﬁ%—gé
01 x] y+(%mtanq§—Rsin0)¢—x9
00 1 0 — L4p tan g
0
0

(4 — R cosf]

y— R sind

_ _ %w tan ¢ (A.29)
0

0

and the horizontal part is

horgug = vy — A(fvg)g (q)

. i — R4 cosf]
y — R sin6

) — %¢ tan ¢

RS SRS

_R@Z.J cos |
RQL sin 6
_ %¢§aﬂ¢ , (A.30)
¥
¢

as given in (A.23).
For the Ackermann steered car, this thesis ysesA (q) 7, with

Rsing 0
Btang 0

Alg) = (A.31)

Rcosf 0]

The examples considered thus far — the vertical rolling disk, the diffefatriige, and the Ack-
ermann steered car — have been principally kinematic, and therefordy imematic. We now
consider a system that is purely kinematic, but is NOT principally kinematic. KEgedifference
between the system is the lack of invariance properties.

A.4.4 Diff-drive towing a trailer

Consider the system shown in Figure A.6, which consists of a differemfia-dobot towing a
trailer. The trailer body is attached to a rotating joint whose axis intersectsetiteraf the diff-
drive axle. The trailer body extent contains that of the differentialedoivdy, so the trailer is treated
as the robot body. For this example, the body reference frame is attaxctiedrotating joint. The

140 (© 2007 David C. Conner

Figure A.6: Differential-drive robot towing a trailer. The system has tweedwheels{«;, ¥ r} as
base variables.

system is driven by the two wheels attached to the differential-drive rdbettrailer has wheels
located a distancé from the rotation point. Denoting the angle between the differential-drivetro
and the trailer body ag, the configuration is given by = (z,y, 0, ¢, V1, ¥R).

The system is subject to four independent nonholonomic constraintse ane the same as the
differential-drive robot: the two drive wheels roll without slipping, and thive wheels cannot slide
sideways. The fourth is that the wheels on the trailer cannot slide sideWeay&affian form, these
constraints are

sin(@+¢) —cos(@+¢) 0O 0 0 O

cos(@+¢) sin(@+¢) 0 —c —R O

cos(@+¢) sin(@+¢) 0 ¢ 0 -—-R
—sinf cos 6 -L 0 0 0

i=0.

The number of independent nonholonomic constraints is equal to the dimexigtee fiber space;
however, these constraints are not in the simple form given in (A.2).

To see the lack of invariance, we define the filbee= SE(2) x S! ~ (z,y,6, ¢), and base
B = (¢1,vR). The fiber is the direct product of two groups; therefafeis a group. The base
space is defined by the two actuated drive wheels.

Define the matrix4 (¢), which spans the null space of the Pfaffian constraints, as

T Rcos(0+¢) Rcos(6+¢)T]
Rsin%@er)) Rsin%@+¢)
2 2
Rsin(¢) Rsin(¢)
Alg) = | 2, %
¢ 2c
1 0
.0 L]

(© 2007 David C. Conner 141

The matrix A (¢) is homeomorphic to the constraint distributiéh, C 7 Q. The lifted action of
the SE(2) fiber components only act on tt$(2) velocity components; likewise, the lifted action
of the S! component only acts on. Therefore,T,D, # D,,, so the constraint distribution is
not invariant; therefore, the system is NOT principally kinematic. Howdweinspectiondq =
A (q) 7, wherer = [1/;L &R]T. Therefore, by definition, the system is purely kinematic.

In this case, the constraints and equations of motion are determined byllgaaehlyzing the
system, and applying algebraic manipulations. The systematic approactbkevéilgrincipally
kinematic systems does not apply. The hybrid control approaches gedeilo this thesis depend
only uponA (¢), and not on a principal connection; therefore, the policy design amhiplg tech-
niques are directly applicable to a differential-drive towing a trailer. Pexvithat the trailer body
covers the differential-drive system, and the system extent is treatesirmga@rigid body.

142 (© 2007 David C. Conner

143

Appendix B

Details of Control Policies For Fully Actuated Systems

This appendix provides details of policy derivations, and proofs of lemrefagenced in Chapter 4.

B.1 \Vector Field Design Details

The vector field design presented in Chapter 4 is based on the pull-baclatiential function
defined over a unit-ball. This section provides details for the general mapping used froitnaayh
convex polytopes tai-balls, and the specific mapping for polygons to the unit disiRih The
section concludes with the derivation of the harmonic potential function aisége disk.

B.1.1 Mapping of Convex Polytopes ta:-ball

In this thesis, the basic cells used for fully actuated systems are convewgesy which can be
specified by the intersection of a set of half space constraints. It tak@simum of n + 1 half
space constraints to boumddimensional space. This makes the boundaries easy to specify, and
involves trivial calculations to check a point for inclusion. In lower dimensjgolytopes are the
familiar polygonsin IR?andpolyhedrain IR?.

Each half space constraint is represented by a peiatlR", and a unit normak € IR". Define
the normal direction as the outwargointing normal with respect to the polytope being defined.
Therefore, the normal direction changes as the system goes from cell &zross a common face.
Let p be the center of the polytope face being specified by the half spaceaiohstiote, this is
an over parameterization of the half-space constraint. All that is reqisirése distance from the
origin, and not a point on the hyper plane. We choose to gafoy use in later transformations.

A necessary condition for the sgtp;, n;) | i = 1,...,m} of half-space constraints to specify
a valid polytope is that the face normais positively span the free space. L&t(q) = —n, -

(q — p;), the distance from a poigtto the hyperplane defining thi# half space constraint. Another
necessary condition is that the center point of each faceés contained in the intersection of the
other half space constraints, that is

Vi=1l...m,Vj=1...m,i#j, B;(pi) >0.

If ¢ is an interior point of the cell, thef; (¢) > 0 forall i € 1...m. This allows us to compactly
specify a convex polytop® as

P={qeR"|Vi=1...m,5(q) >0},

1This is a change in notation from earlier papers, but is consistent with alipeanting normals used for arbitrary
cells in Chapter 5.

assuming that the: half-space constraints form a valid polytope S}f(q) = 0 for some, but not
all, of the half space constraintgis on the boundary of the cell.
Definegg such that

m
gs = argmax [[8 (q) ,
9€P =1

and let

ﬁmax = Hﬂz (Qﬁ) .
=1

ThusSmax is the maximum value of the product of distances to each face on the intetlar oéll.
Define the scaled distance product functibfy) as

1—m

B(q) = Buix [[5i(a) - (B.1)
i=1

Lemma B.1.1 The set of local maxima ¢f (¢) on the interior ofP is a singleton. Furthermore,
B (q) is free of local minima on the interior &?.

Proof: By construction/s (¢) is positive over the interior oP and zero along the boundary Bt
Thereforef (¢q) has at least on point corresponding to a global maximum on the interior of
P. Let such a point, denoteg, be given. Without loss of generality, transform the polytope
such thaiyg is at the origin.

Assume there exists another local maxima on the interior, and denote suthggin
Define the line segment between the origin apdasl (¢t) = ¢, t, and note that restricted
to the line segment is given by

1-m

B)=8@1) = Buikx [[-mi Q@) —p)
i=1

M
= ﬂm’gx H (_nqum t+ nsz’L)
=1

1—-m

= Buix [] (ait+dy) (B.2)

=1

wherea; = —nlq,, d? = nl'p;, andt € [0,1].
The derivative D, 3 (t), along the line segment parameterized lxy

DuB (1) = Puric Sla]](at+dd) | . (B.3)
=1 j=1
J#

144 (© 2007 David C. Conner

The second derivative is

1-m m m m
Duf(t) = Pumix Z a; Z a; H (apt+dy)
=1 j=1 k=
w\ H
1-m m 1 m 0
— m . t d
maxlz; CLZ; a]ait+dgg(ak + k)
J#i k#j
1—m s m m
_ “m 7 . 0
= ﬁmax Zz; alt+d?; CL]H Cth-}-dk)
J#i k#j
1-—m m a;
= DBk Z (alt—l—d?Al>) (B.4)

i=1

where
m m
Ai:Z ajH(akt—}—d%)
7\ ke

gp andg,, are assumed to be local maximum points; therefbfg must be constant or there
must be a local minima ine (0, 1). In either caseD, (t*) = 0 for somet* € (0,1). Note,

that .
D3 (t) |p+= Ai + a H (apt* +dy) ,
i
which implies that
A = —aq; ﬁ (ak t* + d%) . (B.5)
e

Substitute (B.5) into (B.4) and simplify to obtain

1-m 2 m

Dy 3 (t*) = —Bumiax Z ﬁ H (art* + dy)
=1 T =1
kA

Each term in the summation is positive, thereférgg (t*) < 0, which impliesl (¢*) is a
local maximum. This contradicts the assumption thas constant or has a local minimum
along the line segment. Thereforg, must equalg, and there is a single local maximum
on the interior ofP. Sinceg is positive over the interior oP, and there is only one local
maximum on the interior, there cannot be a local minimum in the interior.

(© 2007 David C. Conner 145

From Lemma B.1.1, conclude thdt ¢) monotonically decreases aspproaches the boundary
of P along a ray fromyg in all directions.
Given the specification of a valid convex polytope, we construct a mappitig unit ball using
the scaled distance produgt(q). First, note that the desirable properties of the constructed vector
fields are invariant under rigid body transformation. Ldbe the rigid body motion that transforms
the cell so that the poinjs is at the origin, and the center point, of the designated outlet face
lies on the negative; axis. Such an operator maps face points to face points, and face normals
to face normals. Unless otherwise noted, henceforth assume that thetrafis®ormed such that
pi =T (pi),n; =T (n;), andg = T(q) € T(P).
Given a convex polytop® and transformatiofi’, definey : T'(P) — B as

o q
° @)=+ 5@ (B.6)

1—-m
wherej3(q) : T(P) — IR is given in (B.1). The scaling termi,z in 3 (¢) makes the mapping
invariant to scale. The mapping in (B.6) maps the origin to the origin, and ant/gothe boundary
to the(n — 1)-sphere.
The Jacobian matrixD,¢, is given byD,o = [D,¢;], wherez; is the j'" component of;,
andy; is thei*” component ofo (¢). Each element of the Jacobian is

0i,j i
Doy = YION D., llqll + D,
;P lall +B8(@) (|l + B (q))? (Da, llall + Dz, 3 (q))

_ 51'73' . ©i ﬂ
~ dl+ 8@ (gl + B8(a)° <||q\ +ij5((J)) : (B.7)

where
0 otherwise

5i,j:{ L

Note, when|¢|| =0, ¢; = ¢; = 0, and

The distance function partial derivative is

1-m

Dy,B(q) = Buix Y | —miy [[B (@) | (B.8)

i=1

e
wheren, ; is thej'* component of thé" normal vector.
Lemma B.1.2 The mappingp is full rank on the interior of the celp.
A sketch the proof is given for arbitrary dimensions; a detailed proofvisrgiater for 2D.

Proof: (Sketch) The mapping is designed to preserve angles relative to the origin, and scale
the radial component. Consider the spherical coordinate represerdétitmmapping. The

146 (© 2007 David C. Conner

Jacobian has diagonal 1's for the angle coordinates. In order fon#épping to be singular,
the partial derivative of the radial scaling with respect to the radius neuséto.

Let ¢; be the point of intersection with the boundary, along the ray from the origougih
the arbitrary point in the interior of P. This relationship is shown in Figure B.1. The radial
scaling is given by
rty=—"0
pt+pB(art)’
wherep = ||¢z||, andt € [0, 1]. Then,

p pt (p+ Dyf3)
Dyr(t) = (ot + B) (pt+ﬁ)2
plpt+8) pt(p+ Dif3)
(pt+B)* (pt+pB)
p (B —tDi3)
(pt+ B)?

which only equals zero when
B—tD3=0.

However, by Lemma B.1.17 is monotonically decreasing as we move along the ray param-
eterized byt, so thatD; 3 < 0. Sincet > 0 and > 0 over the interior ofP,

B—tDy3 >0

for all ¢ € P. Therefore, the Jacobian in spherical coordinates is full rank.

The mapping from Cartesian to spherical coordinates is full rank, &atepe origin, where
a proper limit for this mapping exists. Therefore, as the Jacobian is filkleaerywhere on
the interior, the mapping is full rank over the interior of° [8].

The mapping fails to bé'>° at the origin due to the use of the radial retraction. However, this

isolated discontinuity can be accommodated by a local smoothing function.

ol

Figure B.1: The poinyg and origin determine a point of intersectigp in the linear retraction
mapping.

(© 2007 David C. Conner 147

Mapping to a Unit Disk

The simulations presented in this thesis are for systems evolviniQrtherefore this section
presents the specifics for the mapping of polygons to the unit disk.

From (B.6),
- - Y . B.9
o= (e e w) o
The JacobianD,y, is
Do 1 2 [\/T+ B(a) —2Dsf (q) - i~ aDyB (a)]
(\/m+ﬁ(q)) _\/W_meﬂ(Q) \/W_‘_ﬂ(Q)_yDyﬁ(Q)
(B.10)

Lemma B.1.3 The mappingp given in (B.9) from an arbitrary polygon to the unit disk is full rank
everywhere on the interior of the polygon.

Proof: If ¢ = 0, then a simple limit operation yields

L 0
D(I(p ’q:O: ﬂl6&x 1 ,

1

B

which is full rank. Assume|g|| # 0, and consider the determinantDf¢,

(w2 + 7+ Va4 y2ﬁ(q)> (=6(q) + 2 D2 (q) +y DyB (q))
Va2 + 2 (\/ﬂff2 + 32 +B(Q))4

Det (Dgp) = —

(B.11)

The denominator and the first term in parenthesis in the numerator are @osibn-zero
numbers for|q|| > 0. Therefore, to lose rank, the second tern3 (¢) + = D, (q) +
y D, 3 (¢) must be zero. Assume this is true for sogne (x,y) € P. Then,

B(q) = DyB(q) q- (B.12)

However, by Lemma B.1.13 (¢) is monotonically decreasing as we move along the ray
throughgq originating at the origin. Thereford),3 (¢) ¢ < 0 for all ¢ € P, while 3 (¢) > 0,
contradicting (B.12). Therefore, the determinant is non-zero.

The mapping is singular on the boundaries, and in fact, the Jacobian isoheatix at a vertex
of the polygon. This necessitates an approximation of the cell near the polggtices; see [26]
for an approach that uses fillet curves.

Mapping Unit Disk to Unit Disk

The convergent vector field design requires a diffeomorphzisms\qg — B\0 between a unit disk
mapped from the polygon and a unit disk whose origin corresponds tootile §he mapping)

148 (© 2007 David C. Conner

maps boundary to boundary and goal to origin; that(83) = 0B andlim,_.,, ¢(q§) = 0, where
¢ = ¢ (q).

For the unit disk, a mapping based on complex numbers serves the purpbse= ¢° = ¢(q)
be an arbitrary point in the unit disk represented in complex planeszetq’g) = ¢(qq) be the goal
point in the complex plane. Then

_ _ AT %
2y =9(2) = 1 el (B.13)
wherez, is the complex conjugate af,. Clearly,z, = 0if z = z,. Simple algebraic calculations
show that the boundary maps to the boundary.

B.1.2 Harmonic Functions on a Unit Disk

Given the mapping from above, and a potential functiof,, on the unit ball, define the potential
over the polytope as the pullback given by

T="0CP.

The potential function on the unit ball is based on a harmonic potential funetioich is a solution
to Laplace’s equation

0 Y

9,2 + 1t 0.2 0. (B.14)
The harmonic potential function has several “nice properties” releimatttis work; there are no
interior local minima and the solution 8°° smooth [35, 106].

On the unitn-ball, the solution is a computable integral function; on the unit disk with pie@wis
continuous boundary conditions the solution exists in closed form [39, 108 ¢; = ¢ (¢) =
(z4,yq) be the Cartesian coordinates of a point in disk mapped from a point in thgguolyor the
disk, the most natural representation is in polar coordinates, so define

po= \Jritug,

0 = atan2(yq,zq) -

Vi =

Outlet

(a) (b)

Figure B.2: Generating potential on polygon. a) Mapping from polygon te with outlet zone
identified. b) Discontinuous boundary conditions approximated by conigfioctions ag\(—
0.

(© 2007 David C. Conner 149

If the boundary condition is 0 along the outlet zone, and 1 along the inlet, zbe solution to
Laplace’s equation on the unit diskIR? is

al — oo 1 1 psin (a; — 0)
6) = Sy
% (0,) 27 o <1pcos(a19)

1, psin (ag — 0)
- — B.1
T tan (1 —pcos(ap—16))’ (B.15)

where «; denote the angle coordinates of the vertices of the outlet face. FigurenBussshe
mapping and boundary condition used in solution. Except for the discdigmat(p, §) = (1, ap)
and(p,0) = (1,a1), (B.15) obeys Laplace’s equation and satisfies the boundary conditi@ans
calculate the gradient, differentiate (B.15) in termggfandy, and simplify to yield

— sin(a)+sin(B)+p (2 cos(9) sin(a—pB)+p (— sin(a—2 6)+sin(5—26))) T
7w (14+p%2—2p cos(a—0)) (14+p%2—2 p cos(8—0))
Dy, = . (B.16)
cos(a)—cos(B)+p (—(p cos(a—20))+p cos(S—20)+2 sin(a—73) sin(6))
m (14+p2—2 p cos(a—0)) (1+p%—2 p cos(8—0))

The gradient of the potential in the polygoniity = Dg,v, D¢, Which is all that is needed to
calculate the negative normalized gradient vector field
B.2 Component Policy Design Details

This section provides details for the policy design for second orderragste

B.2.1 Unconstrained Dynamics Control Policy

Recall from Section 4.1.2 the second order system of the form
i=mu, (B.17)

wherew is unbounded. Using either the convergent or flow-through vectorsfiaéda velocity
reference, the velocity regulation control law is

u=K (X(q)—q)+X(q) , (B.18)

where K > 0 is the “velocity regulation” gain, which acts to decrease the error and b fe
forward term, X (¢) = D,X ¢, accounts for the change in the vector field as the system moves in
the g direction [105].

Lemma B.2.1 In the absence of constraints, including those of the cell boundary, tegrai
curves of the vector field (¢) are attractive to the trajectories of the closed loop system defined by
(B.17) under the influence of (B.18).

Proof: Define the velocity erroke = X (q) — ¢, and consider the set

Vi=A{(¢:q) [l = 0;.

150 (© 2007 David C. Conner

Define a Lyapunov-like function of the form

T

M = e e

NN ORI

(X(q)—a)" (X(q)—4) (B.19)

Evaluating the time derivative of (B.19) along the trajectories of the closgudgstem, and
substituting (B.18) yields

e = (X(@) -)" (X() -)

= (X(9—-9"
(X(@) - K (X(a) - d) - X(0))
= K (X(q) -7 (X(a)—4d) . (B-20)

For K > 0, 7j, < 0 for all non-zero velocity error; therefore, the 3&ts both attractive and
invariant. This implies that the velocity error asymptotically approaches 6.

The orientation error, defined as the angle between the desired veld¢ity, and the current
velocity, ¢, is given by
L d'x

whereX = X(q) and||¢|| > 0; if ||¢|| = 0, then define) = 0.

¥ = cos™ (B.21)

Lemma B.2.2 In the absence of acceleration constraints, and for initial velocities sudhjths >
0, there exists a lower bound d such that the orientation errot}, monotonically decreases.

Proof: First, consider the isolated case whéere= 0. Define?d |;—o= 0, since differentially the
acceleration will be in the direction of the desired velocity and the orientaticor eiill
instantaneously remain zero. As shown below, the orientation error willineneso for all
time.

Now, assumé!g|| > 0, and consider the set

U:={(q,q) [9=0}.

Define a Lyapunov-like function of the form

N = sin?Y¥=1—cos??
XTgxTq

(© 2007 David C. Conner 151

152

Evaluating the time derivative of (B.22) along the trajectories of the closgudgstem, and
simplifying yields

(XTq)"

) XTg .
. T T T . T T.. .T
_ N (T XTx T 42X g XTX
= (QTQXTX)2< q q q+ a9 q +
— 2T XTX (XTq+qTX)) (B.23)

Substituting (B.18) into (B.23) and simplifying yields
2 (X7q)

o K (XT0)° XX =T (7))

Tiu =
n (q'Tq (x74 - xTX) XTX

+ XTX (XTg—¢"q) qTX)} . (B.24)

Now consider the case whefie= 0, that isq is aligned withX (¢) so thatg? X = ||4]| || X|.
The leading term is a finite positive number sirjgél > 0, and||.X || > 0 by construction.
All parenthetical terms inside the brackets of (B.24) are zero; to see thssitsties X for ¢
with 0 < k£ < 1 and simplify. Thereforey,, = 0, which implies that the séf is invariant. In
other words, if the orientation error is zero, it remains zero.

Away fromi/, the leading term of (B.24) is positive and bounded, because initially > 0.
Assuming the system has finite initial velocity ahtl (¢)|| is finite, it follows that the velocity
error is finite; then by Lemma B.2.1, the error magnitude decreases; treerigfi remains
finite for all time. Rewrite the parenthetical portion of the first parenthetical te brackets
as

((X70)* XTx = ¢"q (X7X)°)
= XX ((x74)* - " (X"X))
= XTX ((IX] cos9)® " (X7 X))
= X 1d)1* (cos® 0 — 1) - (B.25)
This term is clearly negative providetl # 0, which means that fof{ > 0 the effect is to

decrease,. The second parenthetical term in brackets has an indeterminate signfibii¢
since all the terms are bounded.

Therefore, forsufficiently largeK, 7, can be made negative definitefif<| ¢ [< 7. This
implies thatg” X remains positive, and thereforg is always negative for sufficiently large
K. Sincen, < 0, we conclude thal/ is attractive and invariant, and thétmonotonically

decreases under the influence of (B.18).

(© 2007 David C. Conner

To define a composable policy, the policy must also guarantee that the systenhis limited to
| X (q)||. This allows prepares tests to be conducted on adjacent policies by éogiperreference
speeds of the vector fields.

Lemma B.2.3 In the absence of acceleration constraints, and for initial velocities sudhjths >
0 and ||| < || X]|, there exists a lower bound dif such that speed never exceeds the reference
speed; that ig|¢|| remains less thafl.X||.

Proof: Given an initial condition wherdg|| < ||X|, in order to exceed the desired speed, there

will exist a time at which|¢|| = ||.X||.
Assume thatlg|| = ||X ||, and lety; = 3¢7¢. The change in speed is
s lai=ixy = 4 (K (X = 4) + DgXq)

= K ("X —¢"q) +dDyXq

= & (Nall 11X cos 9 = [1dl]*) + aDyXd

= K| X|?(cost — 1) 4+ ¢D,Xq. (B.26)
The first term is clearly negative fd > 0. For the general vector field, the teg, X ¢
is of indeterminate sign, but is finite. Therefore, &ufficiently largek’, 7, can be made

negative if¢ # X. If ¢ = X, the term¢D,X ¢ encodes the change jiX ||, and the system
follows the desired speed profile.

Intuitively, making K sufficiently large ensures that the control policy is correcting more quickly
than the vector field is changing. Formally, the sufficiently lakges determined such that

(FHOT TN T) oo
K > max [max , max ﬁ
o (q’Tq (XTX)? - XTX (qTX)2) gdllal=lx| ¢"¢ —¢" X

(B.27)

This is a worst case limit based on the vector field derivative. Note thatthethumerator and
denominator of the first term approach zerajas: 0 or ||| — 0; therefore, determining a proper
upper bound fork is difficult. In this work, K has been chosen by sampling the state space over
the cell for points with|¢|| < || X||; a reasonable limit exists.

Lemma B.2.4 [Lemma 4.1.2 in Section 4.1.2n the absence of acceleration constraints, with
sufficiently largeK and initial velocities such thafg|| = 0, or ||4|| < || X| and¢’ X > 0, the
trajectories of the closed loop system defined by (B.17) under the inflwér{B.18), converge to
the integral curves of the vector fielld(¢) in such a way that the trajectory never exits the cell
except by the outlet zone afid|| < ||X|| while the system remains in the policy domain. For
flow-through vector fields, the system trajectory exits the cell in finite time.

Proof: If ||¢|| < || X] initially, by Lemma B.2.3 one concludes the reference speed is never ex-
ceeded.

For initial velocities such thai’ X > 0, we know the orientation error is initially less thgn
By Lemma B.2.2, for sufficiently larg&” the orientation error is monotonically decreasing.

(© 2007 David C. Conner 153

Assume the trajectory exits the cell in timbet zone, thereby violating the conditional invari-
ance requirement. At the point of departujé X < 0 given the inward pointing vector field
orthogonal to the cell boundary. This implies that- 7, requiring that the orientation error
increased along its trajectory. This contradicts Lemma B.2.2.

For flow-through policies, the vector fieldl (¢) is nowhere zero over the cell; the system
cannot come to rest and remain stationary, because the system exgeia@nacceleration
along the vector field. Therefore, the trajectory must leave the cell viauthet @aone under
the influence of (B.18) for the given conditions. The speed is non-aenost everywhere;
therefore, the system exits the cell in finite time.

Likewise, for convergent policies the vector fiel) is non-zero everywhere except at the
goal, and the system converges to a neighborhood of the goal in finite time.

The utility of lemmas B.2.2 and B.2.4 is limited by two factors. First, a large valué&faan
lead to an overly aggressive policy over the cell that may prove troubiegor implementation.
Secondly, and most importantly, all real world systems have acceleration limhitsh may very

well be violated by the feed-forward term of (B.18), regardless of tHieesof K and the velocity
error.

B.3 Details of Hybrid Control Policies
for Constrained Idealized Dynamical Systems

This appendix provides details of the hybrid control policies introducecentién 4.1.2. For the
model

j=u, (B.28)
consider the following dynamic constraints,

Vinax » (B.29)
— (B.30)

4l

<
lully = llglly <

The approach presented in Chapter 4 used a velocity reference saadiriyybrid control policies
defined over individual cells to guarantee convergence without viol#tigonstraints.

A

From Section 4.1.2, the reference vector fielXig;) = s(q) X (¢), where

S*

s(q) = min W

s Vinax | - (B.31)

154 (© 2007 David C. Conner

with s* and\ defined as constants. The spectral ncHrmqf(H encodes “slow down while turning.”
The vector field derivative i& = D, X ¢, with

DyX = s(q) DqX + Dys(q) X(Q)

B 8* D% - S*DqHDqXH %)
[o]2 (k] +)
s, o Dol X@
o x| +2 U ([pex] +2)

Consider the limiting case whete= D, X ¢ and|||| < || X (q)]|, then
o D[p,X| X(a) 5
Jull < W77 [PaX — - -
[E2qER ([oax]|+2)) [paX] +2
(S*)Q N Dq DqXH X(q)
A~ 2 DQX -
([oax]| +2)
Thus, being somewhat conservative, let

v 1 (2])

K _ xofox)| |
\/HDqX i (g e
The system can then follow the reference vector field without exceedingdteleration bound so
long as the speed atdoes not excee«ﬁm.
A hybrid control strategy is used to expand the policy domain; defined 4, and®,, where

the subscripts S, A, and T refer to “Save,” “Align,” and “Track” resfively. The control policies
obey the prepares relationship

(B.32)

g = Dy = Pr.

B.3.1 Save Control Policy

Consider the case where the best the system can do, using all availedgdkration, is prevent colli-
sion with the cell boundary. The Save control poli®y, is used to apply all available acceleration
in way that prevents collision with the cell boundariti is at all possible The exact form of the
Save control policy is dependent on the structure of the cell. The workteths focused on the
use of arbitrary convex polytopes. For a convex polytdpethe Save control policy developed
by Rizzi [105] has maximal domain. This section presents this Save polidydevelops a hew
expression for the savable set defining the domain of the policy. Firstolloy s presented in its
basic form; then the switched dynamics induced by the policy are discussed.
The Save control policypg, applies all acceleration normal to the boundary at the projected

collision point, in order to slow the system and prevent collision if at all péessibhe goal of the
policy is to bring the system to rest within a given cell without violating the calinataries. Define

(© 2007 David C. Conner 155

Figure B.3: Collision projection based on current velocity. The acceleratomponents of the
Save control policy always act to slow the overall speed and push bettrgy away from the point
of imminent collision to a local maximum of the distance to collision. At the local maximuen, th
collision normal is aligned with the current velocity.

q. as thecollision pointon the cell boundary along the direction of the current velocity; that is
the point of boundary intersection if no control input is applied (see Ei§u8). Letn. denote the
outward pointing boundary normal at the collision point; this is termedtiiésion normal For
now, under the general position assumption, assume the collision pointt&@rauhin one face of
the polytope. That is, the collision does not occur at the intersection of twooe faces of the
polytope. Define the Save control polidyg, as

U= —ApaxTie - (B.33)

The effect of the Save control policy is to accelerate maximally away fronpribjected collision
point.

The effect ofP g can be decomposed into a component along the current velocity, and a-comp
nent orthogonal to the current velocity, as shown in Figure B.3. Irnyesase, the component along
the current velocity acts to slow the system down, while the orthogonal canpants to steer the
trajectory away from the closest boundary.

Note that the control policy always acts to maximally decrease the compoheelboity to-
wards the shortest collision distance. This pushes the trajectory awaythie point of imminent
collision, and locally increases the time to impact. The acceleration away fropoihieof first im-
pact will continue until the velocity vector is oriented toward the intersectidmofor more faces
of the polytope, as shown in Figure B.3. Thus, as the system is acceleastigfrom the point
of imminent collision, it is accelerating towards another face, until the sysedatity is oriented
toward the intersection of two polytope faces. In this case, accelerating idirection of either
face’s surface normal would decrease the time to impact of at least ¢ine fafces. This introduces
a discrete change in the required acceleration direction.

When the collision point is on the intersection of two or more faces, redefmedhision
normal to be in the positive linear space of the normals of intersecting fdicdhe planar case,
where the current velocity is directed toward a vertex, the collision normaligaed along the
negative direction of the current velocity. In the general case, theioolli®rmal is oriented so that

156 (© 2007 David C. Conner

nq 1"
Triangular region defines
co-dimension (n-m) hyperplane
ln Negative linear span
3 of face normals

Figure B.4: Collision with the intersection of two faces using the Save polige Eas transparent.
With m = 2 andn = 3, the velocity is contained in a co-dimension 1 plane.

it and the current velocity vector form a co-dimensien— m) hyper-plane normal to the surface
formed by the intersection of the polytope faces, wherie the dimension of the configuration
space andh is the number of faces intersecting at the collision point. Figure B.4 showsaanmpbe

of this for 3-dimensional configuration space. The acceleration compaoatained in this co-
dimension(n — m) hyper-plane is by definition normal to the surface formed by the intersei€tion
the polytope faces. The acceleration pushes the trajectory along theatitenssurface towards a
“corner”, formed by intersection with third face. The process continmgsthe intersection surface
is a point, and the collision normal is oriented directly opposite the currentitelavhich drives
the system to rest.

Lemma B.3.1 [Rizzi [105]] The Save control polic¥ s, is capable of bringing to rest any condi-
tion in 7P that can be brought to rest without violating the given constraints.

Proof: Based on [105].

Assume®g cannot prevent collision with the boundary for some initial state, and furthe
assume the existence of another control poligythat can prevent collision.

Any boundary violation under the influence®§ involves collision with the “nearest” bound-

ary component, that is the boundary component with the shortest time to impawever,

®¢ acts to maximally increase the time to impact of the nearest boundary compohent. |
'y # ®g, thend’y, must not act to maximally increase the shortest time to impact. By if
cannot prevent the collision, then neither dd@

(© 2007 David C. Conner 157

Given the proof of correctness, we seek an expression for definengavable set for convex
polytopes. The distancd,, to thecollision plane defined by the collision point and the collision
normal is given by

de = _nz ((] _pc) >

wheren,. is the collision normal, ang, is a point on the face. Define the collision speed as

Se¢ = an7
wheres. is the velocity component along the normal to the collision point. The collisiondspee
encodes how fast the system is approaching the boundary.
The time required to bring the collision speed to zero, using maximum acceleiratios con-
stant direction of the collision normal, is

Sc

ty = .
Amax

The distance covered during the braking maneuver is

d t 1A t2 8(2:
=5 - = = .
b clb 9 maxlp 92 -

Using these definitions, define the collision avoidance ratio with the initial collisios, (1, as

d
=1

Note, that if(; < 1 then collision with the first face can be avoided, whjle> 1 implies that
collision is inevitable.

Now, consider the change ¢n as time evolves. From the initial point, both the braking distance
dp and the collision distancé. decrease by the distance traveled over some differential time period.
Write ¢; as a function of time, obtaining

dy — fg (Se — Amax 7) dT
dc - fg (Sc - Amax T) dr
dy — et + 3 Amax t°

= . B.34
de — 5.1+ %Amax 2 ()

Q) =

Here we assume that the cell is a convex polytope, with the collision normatasdrover some
finite range, Taking the time derivative of (B.34),

. —Se + Amax t db*50t+lAmaxt2

G = A o ? (e T A)
dc — Sct+ §Amaxt (dc — Sct+ §Amax t2)
2 (db — dc) (Sc - Amax t)

(de — set+ LAman 12)°

(B.35)

In the time period before the collisioR, — Anaxt > 0 andd, — st + %Amax t2 > 0, there-
fore, the sign of;; depends on the relative valuesdgfandd,. If d. > dj, then the derivative of the
collision ratio is negative, and the collision ratio never increases beyonshihevalue signifying
imminent collision. Intuitively, the remaining braking distance goes to zerorédfee collision

158 (© 2007 David C. Conner

distance, and; — 0. On the other hand, if, > d., ¢ is positive, signifying no recovery. In this
case, the collision distance goes to zero before the braking distanctheacoadllision ratio “blows
up.” While this proves that the system will not collide with the initial collision faté&ils to prove
that there will not be a collision with any face on the polytope.

A discrete change in collision normal occurs when the velocity is orientedrdaathe inter-
section of two polytope faces. This discrete change requires a modificattbie twllision ratio
calculation, as the acceleration is no longer orthogonal to either faceefohe although the Save
policy may be able to avoid a first collision face in isolation, collision with the sedane may
be unavoidable. As the closed-loop dynamics in response to the constatfdration are easy to
determine, it is possible to determine the collision ratio when the system velocityriedlgth the
intersection of two or more faces based on the new collision normal.

Let n; equal the original collision normal defined by projected collision with a singée f
and letp; denote a location in the associated face. Using the Save policy defined B),(Bh8
closed-loop dynamics are

4(t) = a(0) + 40}t — S Amasmi . (8.36)
Q(t) = Q(O) — Amaxmit . (B.37)

The instantaneous time to collision for the closed loop system is

i (a(t) —py)
. niqt)y

Likewise, the time to collision with the second face is

ng (q(t) = pa)
n3q(t)

where the second face is determined by checking the component of veldtibgonal to the first
face with respect to collision with other faces. Equatingandt.,, solve for the time at which the
velocity is oriented toward the intersection of two faces, which we defjotéet d., denote the
orthogonal distance to intersection of faces 1 and 2. With the redefiligiaronormaln., define
the secondary collision ratio as

tey =

9

6 (nT4(t2))”
* 7 2Anande,

For higher dimension systems, continue these calculations beginnitag atnd solving for the
closed-loop response given the new collision normal. The iterations centintil the intersec-
tions of additional faces results in a single vertex point. If at iteratjahe calculated value for
(; is greater than one, collision is inevitable and the iteration halts. Given the iteatlefine the
overall collision ratio(. as

(= max G -

Section 4.1.2 introduced the notion of thavable sets the domain of the Save control policy
for a given cell. Given the definition of the overall collision rafjo formally define the savable set,
S, as

§= -@(q>573) = {(QaQ) | qeP, (< 1} .

(© 2007 David C. Conner 159

The goal set of the Save control policy,(®s,,), is any rest condition within the cell, or more
formally

Y (®sp) ={(¢,9) [a€P, |4l =0} .

The savable set is positive invariant under the Save control policybe&ave does not increase the
collision ratio, (., for any state in the savable set. Because the system is always applyatiyee
acceleration relative to the current velocity, the system comes to rest intiinée

Lemma B.3.2 [Lemma4.1.3in Section 4.1.Hor a given convex polytope and initial velocity such
that(. < 1, the Save control policy never increaggsTherefore(. remains less than one, collision
is avoided, and the system remains in the savabl&set 2(®g,) = {(¢,q) |¢ € P, (- < 1}
and eventually comes to rest.

Proof: The collision avoidance rati. is defined by the worst case.(f = (; < 1, the calculations
associated with (B.35) show that the Save policy will decréase that(. remains less than
1. If {. = (; < 1 for somei > 1, the calculations are repeated for the defined collision
normal beginning at tim¢,. Again, (. is shown to decrease; therefore, the system remains in
the savable set. The system will eventually come to rest, thereby avoidingaollis

|

B.3.2 Align Control Policy

The Align control policy applies maximum acceleration to the system in orderie&lgring the
velocity into the domain of the Track control policy whenever collision with tHelmmindaries is
not imminent.

The Align control policy continuously transitions from the Save control yaieca condition
where maximum acceleration is applied along the velocity error vector, whitdlerates the system
and turns the velocity toward the desired velocity vecio(g). The domain of the Align control
policy, given the collision ratio defined above, is

P(®a)={(q,q) [qeP, <1}

v:maX(O,HCC> ,
1

wherep € (0,1) is a user defined parameter defining the collision avoidance margin, ané defi
the Align control policy as

Let

(1—0(v)) Pg+o(v)é T T -
o o) Ao EX <0 5 a6
AT A (o) ®s=0(v)d ihorwise (B.38)
1 (1=0(v) 25— (v) 4|
wheree = % § = lr, ando : v — [0,1] is a transition function withr (0) = 0 and

o (1) = 1. Demonstrations in Chapter 4 usé¢v) = /v.

The Align control policy guarantees that the system remains in its domain, a®libg tran-
sitions to the Save control policy action whén> . Recall that under the Save control policy,
the collision ratio(, is guaranteed to not increase. Therefore, the system will not ex{t.tke 1
domain, once the threat of imminent collision is over. We> w, the action of the Align policy
is “saving”, when(. < pu the action is “aligning”.

160 (© 2007 David C. Conner

Because the domaiv}(® 4) C S, the worst the Align control policy will do is bring the system
to rest. That is, the goal set of the Align control polig(® 4), is

G(@a) ={(q,9) [q¢€P, g =0},

which prepares the Track control policy. In the normal case, the Alignirabpolicy brings the
system velocity orientation towards the desired velocity orientation, while attine time reducing

the speed of the system. If acceleration along the unit error vector woudlltteincrease the
velocity, that is whenj” X > ¢7¢, the system switches to accelerate against the current velocity.
In all regions, the Align control policy decreases the system speedyrargs the system to rest in
finite time.

B.3.3 Track Control Policy

The Track control policy brings the system velocity into alignment with the véietid X (¢) by us-
ing maximum available acceleration and transitioning continuously to the velofatgree control
law. The domain of the Track control policy is

2(®r) = {(¢,9) [¢" X >0, [ldll < [X (@)} -

Although the Track control policy works for convergent policies, thisailgtion will focus on flow-
through style policies. For flow-through policies, the Track control patieyst guarantee that the
system trajectory does not exit the cell other than by the outlet zone. ddi@fithe Track control
policy is

G(®r) ={(q, 9) | ¢ € OPouties» 14l < I X ()|},

i.e. the system exits via the outlet zone with speed no faster than the desireld spee

To accomplish this goal, the Track control policy monotonically decreasexitgtation error
between the current velocity and the desired velocity. The approachsosee of the available
acceleration to keep the orientation error constant as the trajectory gvahe uses the remainder
of the available acceleration to decrease the error.

The vector field derivativeX = D, X ¢, defines the amount the desired velocityg), changes
as the system moves ljy Let dQ be the acceleration vector applied to the system such that the
change in orientation error is zero. Essentiallg), shown in Figure B.5, is a scaled versionsf
that has been rotated by the orientation error.

Consider the plane defined by the current velogityand the desired velocityy (¢), which we
term thevelocity plane Decompose the vector field derivative vector into three components: the
component along the desired velocity, the amount orthogonal to the desloaity in the velocity
plane, and the remainder. The component along the desired velocity isfédremtifal speed change.
The second component encodes how the desired velocity vector diffglerotates in the velocity
plane. The remainder encodes how the velocity plane differentially rotasgmire. If the system
is accelerated such that the current velocity differentially rotates in theitejdane the same as
the desired velocity, and rotates with the velocity plane, then the change ineheation error will
be zero. Define the following unit vectorg; M, N, and P, whereg is the unit vector along the
current velocity, M is the orthogonal to the desired velocity in the direction given by the eratore
e = X(q) — ¢, N is the unit vector orthogonal to the current velocity in the directiod/ffand
P is the unit vector orthogonal to the velocity plane. These vectors arensinovigure B.5. Note,
t[latMAandN are both in the velocity plane. If the current and desired velocities arecaljglefine
M =N =0.

(© 2007 David C. Conner 161

X(q)

e=Xq ':quq'
. 0
g Q
N
N
P M

Figure B.5: Velocity vector relationships for the Track control policy.

Letz = XTX andm = MT X, and define
P:X—a:X—mM,

where X is the unit vector along the desired velocity (recEllq) = s(q) X(q)). The vectorP,
orthogonal to bothX and A, defines how the desired velocity vector rotates out of the velocity
plane. The scalar defines the differential speed change, and the sealdefines how the desired
velocity vector rotates in the velocity plane. Considering the different madgstof; and X (¢),
define

]| : N
dQ = rq+mN+ P .
1 X (gl ()

This is equivalent to scaling, and rotating in the velocity plane by the orientation error. Given

the desired velocity scaling{q), from (B.31),]|dQ|| < Amax becausé|q|| < || X (q)| in Z2(®7),

and HXH < Anax. Lettingu = dQ will hold the orientation error constant, while allowing the

speed to change proportionally. In general, becddés| < A, there will be some acceleration
capacity left over to decrease the orientation error. The remainder afdtiion presents a strategy
for efficiently using the remaining capacity.

Consider the control law = dQ+ K* (X (q) — ¢), whereK* is calculated to use the remaining
acceleration capacity. The speed will never exceed the desired spegedthis control, because the
only component along the current velocity vector is directly proportiontdéspeed change of the
reference vector field whelj|| = ||X || and the component along the error will tend to decrease
speed. Thus, this control will decrease the orientation error, or a&t\weep the error constant.

The available control can, however, be used more efficiently. Condider< 0 the vector field
is changing in a way that is already decreasing the orientation error. iAlee,speed change given
by z is positive, then this component can safely be ignored; assuming that aligisreferred
over speed matching. Redefiid€ such that

dQ = ”)g((j(!)H (min (0,x) ¢+ max (0,m) N +P> .. (B.39)

and preferentially use the available acceleration for steering, then ysemaining acceleration
for speed regulation. The Track control policy is defined as

Or:u=dQ+sN +aq, (B.40)

162 (© 2007 David C. Conner

where

A /" 4]l
s = min| K N'e, \/Amax2 ~ 74 (PTP + min (0,.’15)2) — ———max (0,m) | and
(XTX x|

a = min | Kj'e \/A 2 44 PTP—<HquaX(O m)+s>2—”q‘min(0 x)
-) max) 9y
XTX Xl Xl

Thes term is used to decrease the orientation error proportional to error, butdibyitéhe available
acceleration; the term is used to increase the speed using a portion of the remaining accaleratio

In the limit, as the velocity error approaches zero, the Track control pidiayentical to the
velocity reference control policy given in (B.18). The vector fidldq) is defined as in (B.31);
thus, @ is able to follow the integral curves df (¢) without violating the constraints. Given this
definition of the track control policy, the value &f only needs to be greater than zero for proper
convergence, and not “sufficiently large”.

Lemma B.3.3 Under the influence of the Track control policy, the system (B.28), withtints
given in (B.29) and (B.30), and initial conditidig, ¢} € Z(®7,), converges to the integral curves
of X(q), defined in (B.31), in a way such thigg|| remains less thafj.X || and the trajectory never
exits the cell except by the outlet zone. For flow-through vector fieldssytstem trajectory exits
the cell in finite time. For convergent vector fields, the system convésgas arbitrarily small
neighborhood of the goal in finite time.

Proof: The policy is designed so that the orientation error monotonically decresstshe speed
never exceeds the desired speed.

Therefore, the proof directly follows that of Lemma B.2.4.

(© 2007 David C. Conner 163

165

Appendix C

Test for Collision Free Cells

The policy design approach taken in this thesis defines conditionally invg@addinies over cells in
pose space. The cell defines the policy domain with respect to pose $pize@ a conditionally
invariant policy, the policy isafeif and only if all poses within its associated cell are collision
free. In other words, since the system cannot leave the domain exaepwal set by definition
of conditional invariance, the system can only collide with an obstacle if thentersects the
boundary of the free pose spakelf the cell is completely contained in the free pose space, then
the system must depart the cell in order to collide with an obstacle, and tHatewioe assumption
of conditional invariance. Therefore, we can guarantee that théchgintrol policy is safe if each
cell used to define a policy within the hybrid control framework is safe. &pendix presents a
novel approach to determining whether a given cell is fully contained witharfrée pose space,
without explicitly constructing the free pose space.

Before presenting our approach, this section provides a brief ovevigwo alternate ap-
proaches that have been used by the motion planning community. This mavidetroduction to
the concept, and The second section provides the mathematical basistiectmique. A tractable
testing procedure is developed in the third section. The chapter condalitthes discussion of the
testing process.

C.1 Alternate Approaches

As with the rest of this thesis, this discussion assumes a single bodied robioignma bounded
planar workspace populated with a finite number of obstacles. Many ofaithe gath planning
techniques assume a point robot moving through its environment[22,fhdn-point robot has
fixed orientation or is bounded by a circle, then the process of consguittenfree pose space
can be viewed as “expanding” the workspace obstacles to accouthmefdinite robot size, which
allows the robot to be treated as a point for planning purposes [22T8W.approach is shown in
Figure C.1.

The process of “expanding” the obstacles is based on the planar Mskkdifference [22, 87].
Let R ¢ IR? denote the set of points occupied by the robot relative to its refereriog pod
let O C W denote the set of points occupied by a particular obstacle in workspaeinelhe
expanded obstacle as

O;©R={peW| 3o, perp=0a—b},

For flow-through policies, the implicit requirement is that the goal setdreained in the domain of another safe
policy

Figure C.1: The figure shows a bounded workspace with five black aestaincluding the
workspace boundary. Two robots, labeled ‘A and ‘B’ are shown i ldwer left; robot ‘A’ is
circular, robot ‘B’ is shown by the black ellipse. The reference poirgssarked with small pluses.
The dark gray regions shows how the obstacles are expanded tanaézothe size of robot ‘A’
Robot ‘A can plan a path through the remaining space as if it was a poinbn8ezvative approach
would bound robot ‘B’ with the large circle centered at the referendet@s shown, and then ex-
pand the obstacles as shown by the light gray regions. This results incendetted workspace in
this example. As robot ‘B’ is actually narrower than robot ‘A, and caspbetween the obstacles
at specific orientations, this conservative approach is not complete.

whereO; © R denotes the Minkowski difference between s@tsand R. For circular robots, or
objects with fixed orientation, this transformation to an expanded obstacksegyation is exact,
and point-based path planning approaches are complete. There aithalgdor constructing the
boundary of the expanded planar obstacles for circles and polydgangobots with non-circular
shape and variable orientation, one approach is to expand the obstasés dn the minimum
bounding circle whose center is the reference point attached to the r@foite this approach
guarantees safety, it is overly conservative as illustrated in Figure C.1.

Another approach is to map the workspace obstacles to obstacles in thepaase Concep-
tually, the planar workspace obstacles are expanded based on thidéoalyoat a given orienta-
tion [22, 75]. These planar sets can be “stacked up” by considergfg@@ntation as a slice of the
body pose space; Figure C.2 shows an example of this approach. Nuotteishatacking process”
results in a mapping from the planar workspace tolRtterepresentation of the pose space. Even
for simple shapes like polygonal robots and obstacles, the represeritimnpose space obstacle
boundary becomes a collection of curved surface patchigs irAlthough there exist algorithms to
construct these representations for obstacles and robots definedicalgebraic sets, the resulting
representation of... is quite complex. Many modern planning techniques, such as probabilistic
roadmaps and RRTs, use probabilistic techniques and collision testing tathkplioid construct-
ing the free configurations space [78, 75].

166 (© 2007 David C. Conner

Figure C.2: The pose space obstacle for a triangular robot and figd-siastacle in workspace.
Notice how each vertex/facet combination becomes a curved surfacedrspace. (Figure courtesy
Howie Choset [22].)

C.2 Calculation of Expanded Cell

For the hybrid control technique used in this thesis, we must verify theysafea given policy
over its entire domain. We prefer guarantees over probabilistic apmeabht initially it appears
difficult to test that a given cell, of arbitrary shape, is fully contained inftée pose space. This is
because the test would apparently require constructing the pose $isé@eles, and then testing for
intersection between the surface patches that define the cell boumdiityeacurved pose obstacle
boundary surfaces in three-dimensions. Our approach avoids tiféseltées by inverting the
problem.

Our approach expands the cell, which is used to define control policy idepend not the
obstacle; this approach allows simple intersection tests to be performed in thepaoce. This
section provides an overview of the approach, and then derivesaa @&xalytic mapping from a
point on the cell boundary to the corresponding point on the exparadidzbeindary. The discussion
begins with some mathematical preliminaries, then the general mapping is definedecific
instance of this mapping is demonstrated for an elliptical robot body. Latéoss use the general
mapping to define a test that lends itself to simple calculations.

To motivate our approach, consider the two-dimensional iconic examplensinoFigure C.3.
In this example, the robot has fixed orientation, and the cell is represkeytix two-dimensional
funnel. As the robot body is placed at different positions within the cellrgbet occupies different
regions of the workspace. Given a cell, robot body, and collectiobstbales, our approach verifies
that all possible poses within the cell are collision free.

Recall from Chapter 5 that our control policies are defined over cellsinabot's pose space.
The cells define the policy domain in the pose space; that is, the set of ai pes=; define the
poses for which a given policy is valid. The mappiRdg) defines the set of points in workspace
that a robot body occupies at a given poBdjg) is a function of both position and orientation of
the robot body. For a given cell;, let

RE) =] R (C1)

gEE;

R (Z;) is the swept volume aR (g) over allg € =;; thatis, R (Z;) is the set of all possible points
in workspace occupied by the robot for any possible pose within the cell.

(© 2007 David C. Conner 167

Figure C.3: Consider the iconic funnel used to represent the cell tiaedehe policy domain, and
the dark polygonal robot body shown in the lower left. The body refeeoint is indicated by the
dot in the center. In this example the robot body is at fixed orientation. Ifdhet body is placed
at any position within the cell, it occupies a certain region of the planar pades If the robot
body is convolved with all positions within the cell, the set of points occupiethbyobot extends
beyond the boundary of the cell, as indicated by the light gray region.

Definition: A cell is collision freg that is contained in the free pose space, if and only if
k

For collision to occur, an obstacle must intersect the bounda#y (&;), denotedR (Z;), or an
obstacle must be completely contained in the interid® 6E;). Thus, to test for collision, a mapping
R:=;, C G — R(E;) C Wis needed; Figure C.4 illustrates the approach.

The expanded cell approach developed in this chapter finds tractabledsetregpproximating
R (Z;), and then tests this approximate set for collision in the workspace. Théechigscribes an
approach that guarantees the approximation is safe, without being ceedgrvative.

For this approach, we first identify the local charflit? of the body pose spaggthat is used
to define the celE;, with R? = W x IR, the planar workspace crossed with the real line. To be
formally correct, we map the cefl; into this second copy dR?; in an abuse of notation, I&;
denote the closure of the cell IR? and letg denote the pose in this spacelNe assumé; is a
compact, connected, closed set, without holes; that is, it is homeomorphimatbiaIR?. The cell
boundary is composed of piecewise differentiable surface patchefieasma well defined outward
pointing normal almost everywhere. These conditions are true for thedsdliged in this thesis.
The obstacles are mapped from the workspad&'ta {0} in this same copy oR®.

2This “abuse” is recognition that the pose spgcand thelR® representation dfV x IR are not the same spaces, even
though they are both embeddedRy.

168 (© 2007 David C. Conner

y X X

a) Cell in robot body pose space b) R (Z;) - Extent of robot body in workspace

Figure C.4: Given a cell defined in pose space (a), we seek a mappi(Eg in workspace (b).
In this example, the lighter surface mesh shown in (b) represents tli&(Sg} for the cell in (a).

The approach developed in this chapter expands th&gell IR? to account for the extent of the
robot body, and then projects the expanded cell tactivelane given byV x {0}. The projection
yields R (Z;), or more precisely its equivalent representation in this codiz&f Figure C.5 shows
the expanded cell representation for the mapping in Figure C.4. The @mpaiprojection, and
subsequent tests depend only on the robot body shape, the collectibatatles, and the specific
cell shape.

Loosely speaking, the expanded cell is found by calculating the Minkiostgk of =; and
R (g). Where the Minkowski difference is used expand obstacles in ordedtcait® how close
the body can approach an obstacle, and the Minkowski sum is used tatmdtiow far past the
boundary of one set another extends. In this case, howB\g) is a two-dimensional set ilR?
and bothE; and the expanded cell live iR?. We extend the basic Minkowski sum definition based
on calculations performed on a planar slice of the cell. The slice is takenie¢m grientatiory
(Figure C.6-a); the Minkowski sum is calculated for the cell restricted tslibe and the robot body
at the same orientation. We will abuse notation and used the Minkowski smimo$yo denote our
expanded cell as; & R. Formally, the expanded cell is given by

10
+ 10 1|p|{z,y,0} €Z;andp € R({0,0,6}) cR?} , (C.2)
00

o
)
uy)
1
R R

whereR ({0, 0,0}) represents the set of robot body points at the origin rotatet! Bis extended
definition maps the two-dimensional poipntinto the three-dimensional space. This continuous
mapping is equivalent to taking the standard Minkowski sum of a planar &fiég at constant
orientation with the robot at the same orientation, and then “stacking the s{gmsFigure C.6).

(© 2007 David C. Conner 169

y X

Figure C.5: The cell boundary (dark inner surface) is expandecctmuat for the robot body shape,
and projected to yield? (Z;). Note, the goal set is not shown, and appears as an open face. We
assume that the goal set will be contained within the domain of another paiexpanding this

set is unnecessary.

X X X

a) Cell cut at constant orientation b) Cell boundary slice and robot body c) Expanded cell boundary for slice

Figure C.6: The calculation of the extended surface is based on a plankowski sum. a) Con-

sider a slice of the cell at constant orientation. b) The robot body is ghlaloag the boundary of
the cell for this constant orientation. The corresponding point on tharelqd surface is found by
matching normals for the planar cell boundary and the robot body. chdtwedary of the extended
cell is calculated.

In another abuse of notation, I8t(Z;) = 7., (Z; ® R) C W x {0} C IR?, wherer,, is the
trivial projectionm,, (x,y,0) = (z,y,0). This definition is identified with the definition given in
R (5;).

While this set-based calculation &f(Z;) is correct, it is impractical for actual testing because
it depends on an infinite number of points in bdt{g) andZ=;. As a step toward reducing the
complexity, consider the boundary of the expanded cell. For planar Miskicsums of two setsl
and B, the boundary ofA ¢ B is a subset of the convolution of the boundaiets and9dB [100,

170 (© 2007 David C. Conner

101, 109]. Thati® (A @ B) C 0A x OB, where
0A*x 0B ={a+b|lacdAbec OB, s.t.npa(a) | nss(b)} (C.3)

with ny4 (a) the boundary normal tal at e andnyp (b) the boundary normal t@ at b, and||
denotes the vectors are paralleThis result says that any boundary point of the Minkowski sum
of two sets will be the sum of two points taken from boundaries of the two Betshermore, for

a given pointa € 0A, the choice of poinb € 0B is constrained to those points éB such that
the boundary normal dtis parallel the boundary normal at Note that the converse is not true;
the sum of some boundary points of the two sets will be on the interier ©f B and not on the
boundary.

We use this result to define a mapping from the boundary of thesgédl a surface that covers
the boundary of the expanded c&l] @ R. Recall how the planar Minkowski sum was used to
define the mapping in (C.2) between a two-dimensional set and three-dimansgt; we define an
analogous mapping for the convolution-like surface between the two-diomathsobot set and the
three-dimensional cell. Given a robot pose on the cell boundagy,{x,y,0} € 9Z; C IR?, the

corresponding outward pointing normal to the cell boundary;) = [nx Ny ng]T, is projected

to a plane parallel to the-y plane using the trivial projectiom,,n (g) = [nx ny]T. Given a point

p € OR({0,0,60}), letngr (p) denote the outward pointing normal to the robot body at orientation
0. Giveng € 0=; which defines a positiofiz, y) and orientatiory of the robot body, we find the
pointsp € 9R (0,0, 8) such that their normal, (p) is parallel to the projection of the cell boundary
normalr,,n (g) (see Figure C.6-b). Define the convolution-like surfaé * OR, which contains
the boundary oE; & R C IR?, as

(C.49)

The mapping is continuous except where the cell surface normal praojdstioot well defined.
Piecewise differentiable cell surface patches map to piecewise diffdskenggpanded cell patches
almost everywhere.

x 1 0
y] + {0 1} pHz,y,0} € 0Z;,p € OR({0,0,0}) ,s.t. myn (g) || nr ()
0 0 0

Example: Elliptical Robot Body

Consider the elliptical robot body shown in Figure C.6-b. In the bodyreaiee frame,
the robot body boundary is defined by,, = (2,4, yr0) € R* | ! (pr) = 0}, where
the functionf (p,») = pL, Mp,,— 1 with M a2 x 2 positive definite matrix that encodes
the elliptical shape.

We use the extended convolution operator (C.4) to find the point on thae@agaell
boundary given a point on the cell boundary. et {z,y,0} € 0=Z; c IR? repre-
sent the pose of the body reference point on the cell boundary, ttitleell surface

normaln (g) be given. Define the projected unit vectoy (g) = uiﬂigu- The as
yet unknown point on the expanded cell that correspondsitop = (xp, yp,0) €
0Xi; x OR C R®. Letv, = m,y (p — g) be the vector in the workspace frame from

g to p, wherep is a point on the robot body gt The corresponding point.;, on the

3If both sets,A and B, are convex, thed (A @ B) = dA = dB. Unfortunately, the planar slices of the cells are not
convex in general.

(© 2007 David C. Conner 171

robot body, in the body reference frame, is giverphy= Rot(G)T vp With Rot(#) the
2 x 2 rotation matrix. For pointg on the boundary of the robot at rewrite the body
function as

f (p) = v Rot(6) M Rot(0)" v, — 1, (C.5)
wherev, = m,, (p — g) as before. The robot boundary normal in the workspace frame
is given by

ng (p) = 2Rot(6) M Rot()" v, .

Sincep, and thusny (p), is unknown, letk represent the unknowjnr (p)||. To sat-

isfy the matching normal requirement of the convolution surface, equate) /k and
nr (g) and solve fow,, as follows:

2Rot(0) M Rot(6)" v, = ki (g)

vy = g (Rot(6) M Rot(®)") " 1x (9)

v = gRot(G) M Rot(0)" ir (g) -

Substitutev,, into (C.5), and solve (p) = 0 for
2

k= .
V/ix (9)" Rot(6) M~ Rot(6)" 1 (9)

Substitutingk into the solution fow,, yields

10
p = g+ {0 1] v, € 0R(g) * 0=;
0 0
r’] H r 0} Rot(6) M~ Rot(8)" #ir (g)
Y| = |yl + 1|0 1
0 6] [0 0] \/irw (9)" Rot(8) M1 Rot(6)" it (9)

Thus, the poiny = {z, y, 6} on the cell boundary is mapped to the pgint {z,, y,, 0}
on the convolution surface that contains the expanded cell boundary.

For elliptical body representations, (C.4) gives a one-to-one mappamg fhe cell
boundary to a point on the expanded cell boundary.

The mapping(0=; * OR) (¢g) determines a point-by-point mapping for any point on the cell
boundary to a set of points either on the boundargof R or, on its interior. That isg=; x OR :
0=; — 0=; x OR. For more general body representations, such as polygons, (C.4eswyin a
one-to-many mapping at certain points. For example, if the projected ceflahonatches a body
polygon edge normal, the mapping would give the line segment defining tlen@eg surface,
and not a point. For the moment, we will assume the surfaces provide a-@me-tcontinuous
mapping; that is only one point anR (0, 0,) matches, and the surface normal is continuous over
the boundary oE;. Analysis of the surface continuity and one-to-many point ideas are rexplo

172 (© 2007 David C. Conner

later in this chapter. While the convolution surface may define some points onténier of the
expanded cell, the convolution surface will contain the expanded celidaoy surface given a
continuous surface normal ovéE;.

The set of workspace point&, (Z;), occupied by the robot over the cell is found by projecting
the convolution surface t8) x {0}, which is identified with/V; thatisR (Z;) = 7, (0Z; * OR).

LemmacC.2.1

R (Ez) = Ty (Ez (&) R)
= Ty (0(5 ® R)) (C.6)

Proof: The first line,R (Z;) = may (2; @ R), is true by definition when we identify)) x {0} and
W. Functionally,R (Z;) is the union of the projections of each slicesn® R, where each
slice is the Minkowski sum of the robot body an all points in the cell at theneation.

SinceZ; is a closed setr,, (0 (Z; ® R)) C R (Z)).
To see thatk (Z;) C 7.y (0 (Z; @ R)), and henceR (Z;) = 7,y (0(Z; ® R)) , consider
passing a line from¥ = +oo through and orthogonal t8V x {0}. For any point on the

interior of (2; @ R), the line passes through two boundary points; both boundary points and
the associated interior point project to the same poiirx {0}. Thus, we conclude that

Moy (0 (5 ® R)) = 70y (5 © R) = R(S1)

The convolution surface contains the expanded cell boundary, h&Eis® R) C 0=, x OR,
thusm,, (0 (2; @ R)) C may (0Z; * OR) [100, 101, 109].

Any points indZ; « R not contained ird (=; @ R) are in the interior oE; @ R by defini-
tion of the Minkowski sum; interior points project tg,, (0 (Z2; ¢ R)) from the proof of the
second line. Thusy,, (0=; * OR) C m,y (0 (E; @ R)) and we conclude

Tay (02 x OR) = Ty (0 (2 @ R)) .

Thus, we conclude that

By projecting(0=; * OR) into W x {0}, we determineR (Z;) = 7, (0=; * OR), and hence,
the maximal extent of the robot body for any pose in the cell. There asragwoblems with this
definition and is application to cells with discontinuous surface normals. Fiestépping in (C.4)
does not guarantee a continuous coved (i; & R). For each parameterized differentiable surface
patch on the cell boundary=; « R defines an exact parametric representation of a patch on the
cell/robot convolution surface. The surface patches are not ragdgssontinuous if the normals
along the patch boundaries are not continuous. Second, this test siile®gn infinity of points
to be tested. The next section addresses these issues, and usesdéné)yabe a tractable collision
test.

(© 2007 David C. Conner 173

C.3 Collision Testing Using Expanded Cells

This section presents a tractable approach to testing for collision basetismmete sampling of the
cell surface and the mapping defined in (C.4). This section discussealtiations, and methods
to address the continuity issues introduced above.

C.3.1 Mesh Definition

The collision tests are a combination of exact and approximate tests. Wevaneagimesh repre-

sentation of the parameterized surface patches that define the celbbpuhidat is, we are given a

finite collection of sample points spread around the surface, and a collettamlyes that connect

adjacent points to form a surface mesh representation. Triangulafedesunesh representations
are commonly used. This thesis does not address the “best” way to airsstnesh representation
for a given cell, or techniques for adaptively refining the mesh. Wenasghat each facet in the
initial mesh is contained within a single differentiable surface patch.

Given the collection of mesh vertices on the cell boundary surface, ttieesare mapped to
a point on the convolution surface of the expanded cell. This mapping ¢ ard analytic. Using
the same mesh connections as the cell surface representation gives gepreskntation of the
convolution surface patches of the expanded cell.

There are two problems with this approach: disconnected facets aricefgansion. Discon-
nected facets require that the mesh be “stitched together”. Facet expesrguires that the mesh be
refined to meet resolution requirements. Our simple techniques for refirenmgeakh as necessary,
and stitching the disconnected patches together, are discussed beldihe Fooment, assume that
these issues are addressed, and the expanded cell has a “coritsurace mesh representation of
sufficient resolution. The next sub-section presents the approadtit@téor collision; afterwards,
the following sub-section returns to discuss how these two issues arsaddr

There are guidelines for defining the initial cell mesh. Since the exparalei cdefined for
slices of constant orientation, and the mappiag & 0R does not change the orientation, the cell
mesh should initially be sampled at a sufficiently fine resolution in orientation.tHer avords,
there should not be relatively large gaps in orientation between any twe @airertices in the
mesh. As a rule of thumb, consider the minimum bounding radius of the rolaiyt bhaundary,
and the desired sampling resolution in workspace based on obstacle sipgietitation sampling
should be less than desired sampling resolution divided by bounding r&fespecting this at the
outset can reduce the burden on the refinement process. Secaodtidisous normals will lead to
discontinuous maps; thus, itis prudent to finely sample along the boundadel surface patches.

C.3.2 Collision Testing

The collision test is based on mapping the surface mesh of the convolutfanests the workspace

to give an approximation aR (Z;). The expanded cell mesh vertices are projected to the workspace
using 7., using the same mesh connections between vertices gives a collectionriaippirey
facets in workspace. These projected facets approxilR4Eg) since each vertex is contained in

R (Z;) by Lemma C.2.1. Figure C.5-b shows the result of this projection.

Given the planar mesh approximation Bf(Z;), each obstacle is tested for collision. First,
the projected vertices of the expanded cell mesh are tested for inclusian thiéhcollection of
obstacles. This test is exact based on the point-wise analytic mapping; ifex V& contained
within an obstacle, then the cell is unsafe and must be modified. Assumingopalygbstacles, or
simple elliptical obstacles, these inclusion tests are trivial.

174 (© 2007 David C. Conner

To guard against a small obstacle being contained withig;), the obstacles are tested against
the collection of facets in the projected expanded cell mesh. Assuming aopalygpresentation
of the obstacles, the vertices of each obstacle are tested for inclusioy o oe projected facets.
This is an approximate test based on the projected facets. If any obséats® is contained in
the interior of any projected facet, the cell is assumed to be unsafe. Tpriexapation may be
conservative if the boundary &t (Z;) is highly curved, and the facets are relatively large. Obstacle
‘A in Figure C.7 shows an example where this test is overly conservaiReducing the maxim
facet diameter by increasing the mesh resolution will reduce these falsiegms

If these two tests fail to find an intersection, then the cell is assumed to he Baéee are,
however, at least two false negatives that must be guarded agaiestestitan fail in the presence
of long thin obstacles and relatively large facets as shown by obstacla EHgure C.7; thus, the
sampling resolution should be less than the minimum dimension over the set aflebstenother
approach, is to add test points scattered over the obstacle interior in additioa vertices; this
approach also works for non-polygonal obstacles. A third approadealing with skinny obsta-
cles is to test for line intersections between the obstacle boundaries anwjineer facet edges;
however, this increases the computational cost significantly.

Another failure, shown by obstacle ‘C’ in Figure C.7, occurs when thenbary of R (Z;) ex-
tends past the approximation. To avoid this failure, the obstacles shoulddoeg by a distance
based on the maximum error between the actual boundafy/(&f) and the projected mesh ap-
proximation. Given the analytic mapping, and the piecewise differentiabfacgupatches, it is
possible to bound the error, either through sample-based estimation oticaiglyor some mesh
strategies [99]. These calculations depend on the mesh generation tehanig are beyond the
scope of this thesis.

Figure C.7: Collision tests on the approximation/df=;) using overlapping facets. The light gray
region denotes a representationf=;). The grid and facets shows the approximation based on
the projection of expanded cell surface mesh. The dark gray obstatte teft labeled ‘A does not
intersectR (Z;); however, the approach classifies the cell as unsafe based on ¢hénfacsection
near point ‘A'. Obstacle ‘B’ intersect® (=;), but the approximate tests misses the fact as no vertices
in ‘B’ are contained in a facet, and no facet vertices are contained inree obstacle labeled ‘C’

on the right does interseét (=), but the approximation misses this collision.

(© 2007 David C. Conner 175

C.3.3 Patch Stitching and Mesh Refinement

This mesh-based approach to testing cell safety depends on the pragep@aded cell mesh
accurately approximating (=;). Regardless of the accuracy of mesh approximation of the cell
boundary surface, the true measure is how well the mesh mapping appresdraa« 0 R. Thus,
patch stitching and mesh refinement must be addressed.

While the differentiable surface patches on the cell are connected, iaeptnecessarily con-
nected when mapped to the expanded cell. The most likely cause is discostinmionals along
the patch boundaries; in this case a single pose does not have a wedddedirmal. For a mesh
vertex along patch boundaries, there may be multiple surface normals phattegparticular pose;
in this case, the pose is duplicated with multiple vertices each associated witticalpasurface
patch, and therefore a particular surface normal.

One strategy for stitching the surface patches together is to define fagetetthese distinct
vertices together. Along a common patch boundary, two adjacent pasefre patch are joined
with a vertex that matches one of the poses but is assigned to the adjoirfaxgequaitch. Doing this
for all common edges results in a line of degenerate triangles along the ocelliéy, that likely
map to non-degenerate triangular facets in the expanded cell surfgues E.8 shows a schematic
example of this stitching process. One notes the obvious effect of fggaihsion in this example.

To control the accuracy of the expanded cell approximation, and héecaccuracy of the
R (Z;) approximation, the mesh representation of the expanded cell is postpedcand refined
as necessary. As stated earlier, the vertices in the expanded cell mesbjacted to the workspace
usingm,, to give a collection of overlapping facets that approxim@te;). Larger facets will tend
to have larger error, so the length of facet edges is limited based on fheddesrkspace sampling
resolution. Although there are approaches for adaptively adjustinged fiumber of vertices to
create similar sized facets [99], this thesis implements a simple approach. tBévartial mesh,
the refinement process iteratively adds vertices and splits large facenmilititple facets based on
workspace measurements.

Figure C.8: Two continuous cell surface patches ‘A’ and ‘B’ are mdppeadiscontinuous patches
on the expanded cell. By adding facets that contain vertices from bothgsa#tong the common
boundary, the discontinuous patches can be stitched together.

176 (© 2007 David C. Conner

The refinement process described here is based on systematicallyidingdiacets that are too
large. The Euclidean distance between projected facet vertices is tatkufdhe distance exceeds
the defined sample resolution, then the facet is split. In the basic case,\eeriewis added along
the long edge connecting the two vertices, and a vertex is added at theid¢dehthe two facets that
share the edge. Each triangular facet is split into four triangles; the watsféhat share the split
edge are split into eight triangles. Normally, the sample points are added irathmgter space
that defines the cell boundary. The cell surface patch associated witteti vertex is identified,
and the appropriate normal is calculated. The new vertices are mappedexptreded cell, and
projected to the workspace. The basic refinement process continilesach edge in the projected
mesh is less than the workspace sample resolution, or the parameter qpaetice is less than
some minimal threshold. There are a few special cases to consider.

One set of special cases to consider is where a vertex is to be addeddet dhfat connects
two different surface patches along the shared boundary betweecetivgurface patches. If the
edge to be split has two vertices from one patch, then two new verticesldeel,aone for each
patch and surface normal. The proper “stitching” facets are added tlisthaf facets. If the
split is along an edge connecting two different surface patches, thagla sertex along the edge
and a vertex at the centroid is added with interpolated normals. The norreailstenpolated as
illustrated by Figure C.9. In this case, the pose is the same; the only diféei®incthe interpolated
normal. The decision to add a vertex is based on the distance betweertquagapanded cell
vertices and the difference between interpolated normals, as the passpetee difference is zero.
If the new vertex is added to an edge containing an existing interpolated véreenew vertex
should interpolate its normal based on the interpolated normal of its neighbos, new vertices
at the same pose are introduced to address the discontinuous normalstchritie surface patches
together with an approximately continuous mapping.

Another special case relates to robot bodies defined by piecewisesdiffeble functions such as
polygons. For elliptical robot bodies, the convolution surface mappingésto-one; there are only
two points where the normals are parallel, and one is eliminated because iaisaivthe interior.
For more general body shapes, the mapping may be many-to-one. Ha&engider the case of
polygonal body shapes; consider the case illustrated in Figure C.10m&%tr cases, assuming
general position, a one-to-one mapping is preserved as the requirefrraatching normals will
choose a polygon vertex such that the cell normal is in the positive spplaa afljacent edge normals.
If the cell normal matches an edge normal on a polygon, the point on thieazaidary will map to

— -—

Figure C.9: A the junction of two cell boundary patches with discontinuousiabvectors, blend
the normal vectors while holding pose constant to provide a continuousi@sgacell boundary
surface. Similar techniques are used with robot bodies defined by psecdifferentiable curves.

(© 2007 David C. Conner 177

~

Figure C.10: With polygonal robot bodies, the expanded cell mappingrexges discontinuous
jumps between body vertices. This figure shows an arc of the cell bopadd its mapping to the
expanded cell for a rectangular robot body. In this case, the cell megtdx 1 and 3 map to single
points on the expanded cell, but the points correspond to different e®ic the body rectangle.
Cell vertex 2 is mapped to a line segment corresponding to the edge that stitele!l normal.
To preserve a one-to-one mapping, a particular point along the edgdoencisbsen.

a line segment. To preserve a one-to-one mapping, one point in the linergegng be chosen.
There are several “reasonable” choices.

If all the normals of the other facet vertices in the facets connected to thiedex would lead
to a particular body vertex being chosen, it is reasonable to chose thatedex for calculation of
p(g). If the other facets disagree on which body vertex to choose, then &ssmable to interpolate
between the body edge vertices. A more common situation is refining a fayetwakre one facet
vertex is associate with one body vertex, and the other facet verte)oisiaesl with the other body
vertex. In this case, it is reasonable to add an interpolated value in calgudn. The vertex
should track the interpolation value to use in later refinements. Thus, the toame mapping is
accommodated by iteratively adding vertices and facets during refinement.

The final special case, that is checked after the refinement processjidete, is when the three
projected normals of a facet spBt?, or two projections are equal and the other sgRnsn these
cases, at some point in the region of the approximated surface patchofbeted normal is null.
That is, the cell surface normal is orthogonal to the projection plane.idrcise, the a collection
of vertices and facets are added to the mesh that represent a mesteawaraibody at the pose of
the facet centroid. As the cell is compact with a well defined surface npthese added vertices
always project to the interior a® (Z;).

C.4 Testing Process

These collision tests outlined above represent a brute force appraadch tiot appropriate for real-
time calculations; however, it is easy to implement and is suitable for cell validdtiong policy
instantiation. The resulting mesh has a finite number of vertices and finite nwifaeets based
on the sampling resolutions used to guide refinement and enforce termingti@accuracy of the
technique is determined by the accuracy of the expanded cell surfate smesller facets on the
expanded cell surface mesh implies better accuracy. By carefully icigoib® mesh resolution, and
slightly padding the obstacles based on the maximum error bound, the elpmaabe guarantee
the safety of a cell without being overly conservative.

178 (© 2007 David C. Conner

During manual specification of policies, a coarse sampling of the expamailed used to check
for the inclusion of the projected vertices in the obstacles. In the earlysstagerefinement steps
are skipped, and only the exact collision tests of projected vertex in dbgtacsed to rapidly elim-
inate invalid cells. A visual inspection as in Figure C.5-b can also guide thetiseleof policy
parameters during manual instantiation. Once reasonable choices for palaameters are deter-
mined, the refined mesh is used for final validation.

For automated instantiation using the policy cache and reference pointgdddsno Chapter 5,
these collision tests are automated and incorporated into the instantiationsprédiee resolution
mesh is calculated and refined once for each policy in the cache. Thesgarted in the approxi-
mation of R (Z;) are stored with the policy cache. During instantiation, the vertices are oramed
relative to the reference point and then tested for collision using the coltisst® described above.
If collision occurs, that policy from the cache is not instantiated at theeeée point. The rigid
body transformation is fast relative to the mesh generation and refinenoeesg, which only needs
to run once for each policy in the cache.

The complexity of the collision testing has two distinct components. The first coempas
directly linked to the complexity of the mesh generation and refinement prosess and is not
explored here. Given a expanded cell mesh withvertices andV facets, andVy obstacles with
Nop vertices and other test points, the complexity of the collision testi$,®(Vp) inclusion tests
for vertices in obstacles and ¢ x Nop) tests for obstacle vertices in a facet.

(© 2007 David C. Conner 179

181

Appendix D

‘PF’ Style Control Policies

This appendix provides a detailed derivation of the ‘PF’ style control j@sliased in this thesis.
The policies are based on a variable structure control approgathofollowing hence the name
‘PF’ [4]. While the approach is inspired by [4], the control techniqueiffecent. Furthermore, in
keeping with the sequential composition approach advocated in this pappalities have explicit
definitions for the domains of attraction allowing reasoning about their safétye pose space.

This section begins by presenting the structure of the defined policieshandoresents an
overview of the basic control approach for kinematic systems. The faieralations for specific
models are delayed until the end of the appendix. The appendix contintiea wiscussion of
the specific curves — line segments and circular arcs — used in this thesissettion presents
verification that the policies satisfy the composability requirements given itioBe&3. Given the
general overview of the cell and control approach, the formal cblaws for each system model
are derived. Finally, the section concludes with a discussion of the limitatidimese and circular
arcs, and the challenges of extending the technique to arbitrary curves.

D.1 Policy Structure

Throughout this thesis, the control policies are defined over localmsgibbody pose space, which
are termed cells. The cells are defined in a IdRalrepresentation of ther, v, §} pose space The
cells are defined to be compact connected regions without holes. Thenceitshave continuous
boundaries, so th&r 6-dimension in body pose space is NOT identified for the cell definition.

For PF style policies, the cells are defined relative to a two-dimensionalrplefieaence curve
that is lifted to body pose space. liets) = (2 (s), 7 (s)) € IR? define a planar curve in workspace,
wheres € [0,1]. We designate (0) as the(x, y) position that corresponds to the goal set center;
thus, the control policy is designed to move the system along the curvesreml to s = 0.
Letd (s) = atan2 (—i/ (s),—#' (s)) + 2k, where(—i’ (s),—i/ (s)) is the tangent vector in the
direction of travel; this maps the two-dimensional workspace curve into a-ttimensional body
pose space Ccurng(s) = (a: (s),9(s),0 (s)) . By choice of the appropriate integer value kothe
solution tod (s) is restricted to be continuous along the curve parameterized, 1] with 4 (0)
as the anchor point. The cell goal center reference poiptis = {ac 0),4(0),6 (0)}.

To enable policy definition, each reference curve is further restrictéollaws:

(i) g(s) € C*, the space of functions with continuous derivatives for > 1,

1See Appendix A for a discussion of body pose space.

(ii) the reference path’s minimum radius of curvature is larger than minimum alitewehicle
turning radius,

(i) the path has a unique closest point for all planar points within a spedfied neighborhood.

Condition(i) ensures that the proper derivatives are available for our conjpobaph. Conditiorii)
guarantees that the curve will have a full dimensional region of attrag@iondition(iii) guarantees
that for a sufficiently small neighborhood of the path, the policy is uniquefindd; this constrains
the definition of the cell boundaries.

Given a robot pose = (z,y, f) in a neighborhood of thg (s) curve, lets (¢) € [0, 1] specify
the unique nearest point on the planar cupveThat is, ||(z,y) —p (s)|| > [[(z,y) — p(5)] for
all s # s [4]. At g(s), define a local frame# as shown in Figure D.1. Le#; denote the three
dimensional tangent vector to thecurve in the direction of travel and parallel to thg-plane. Let
Z; be parallel to thé-axis of the body pose space and in the same direction.74;efbrm a right
handed coordinate system wif#; and.7;. Given a continuous cung(s), the frame continuously
varies along the path. Note, this convention differs from a conventiaiealdt frame as it does not
flip orientation based on the path curvature and{tfe , .7; } -axes are parallel to they-plane [4].
As described in Section 5.3, the goal set orientation defined by the 16@adlis at the goal set
corresponds to the loceF;-axis atg (0).

The robot body pose is expressed in the lg€drame along the curve g@s(g) = (i (9),7(g),0 (g)) :
Sinces(g) is the closest point on the curve, and thg-axis is tangent to the curve,(g) = 0 by

definition. The control problem is to drive the lateral offgét)) and the heading errér(g) to zero
as the vehicle moves along the path while monotonically decreasigjg Hence, the natural error

coordinates are (g) = (5 (9),7(g) ,é(g)) [4].

D.2 General Control Approach

The control approach for PF policies is based on a form of variabletateicontrol called sliding
mode, control [4, 31]. Sliding mode control works by using a surfacestmd a switching control
policy. If the vehicle pose is “above” the sliding surface, then the systeamats to steer the vehi-
cle pose onto the sliding surface by maximally decrea8ifg as the vehicle moves; for forward

Figure D.1: Reference path with defined coordinates.

182 (© 2007 David C. Conner

motion, this corresponds to turning right. If the vehicle pose is “below” thénglidurface, then the
system attempts to steer the vehicle configuration onto the sliding surface ipatigoincreasing
é(g) as the vehicle moves; this corresponds to turning left while moving forwiardheory, the
control instantaneously switches as it crosses the sliding surface; iidirgssurface is well de-
signed, the “averageFilipov equivalent control causes the system to “slide along the surface” to
the goal [31]. In practice, we define a “blending zone” on either sidb@sliding surface.

To derive a sliding surface in the body pose space, consider the moticadlticle as it moves
along a circular arc of radiug, as shown in Figure D.2. The lateral offsgf,is a function of the
heading changd), for a given radius. From Figure D.2psf = %m, orf = cos™? (1 — %)
Clearly, p must be larger than the minimum turning radius of the vehicle.

Figure D.2: Moving around a circular arc generates a lateral displadethemelationship between
lateral displacement and orientation change defines the sliding surface.

wol3

SN,
SRR,

\\{;\\\\ o

ISP

]

A

S
7
f i

1
o 1
iias Sl

A
F
H

iy

H
H

o A

i
EF
A

(b)

Figure D.3: PF control surface: a) Sliding control surface in the Ic€a.%; plane defined by

(D.1). b) Sliding control surface in body pose space formed by extgutii@ local curve along the
g (s) curve.

(© 2007 David C. Conner 183

Using the above intuition, we define : IR?> — TR as scalar function over the loc 5 F5
plane. For the initial discussion, let

- é—signgjcos_l 1 gl < p
o)=Y Hg) wss 01

6 — sign (|g]) <§ +5- 1> otherwise

where is a free parameter. The~! (0) curve, that iso~! (0) = {(gj,é) o (g,é) =0, is
shown in Figure D.3-a. The sliding surface in body pose space is formedtbuding the local

o1 (0)-curve along thej (s) curve, as shown in Figure D.5-b; denote the extruded surface as

¥=1(0) whereX (9) = o (gj (9) ,é(g)). Stated more precisely, sliding mode control attempts to

drive the error coordinates(g) = <§ (9),9(9) ,9(9)) to theX 1 (0) sliding surface, and then

along thex~! (0) surface toward (g) = (0,0,0) = 0.

Pure sliding mode control works, but suffers from several drakdbacpractice. Sliding mode
control requires an instantaneous change in velocity, which is unrel@iaalreal systems. Finite
control update times make a sliding mode control system prone to chatter. Totenitigae effects,
we define a blending region on either side of the sliding surface. If thersyis outside the blending
region, then the control performs maximal steering towards the slidingcgurfiaside the blending
region, the control interpolates between maximal steering and a neutrahgtpelicy that moves
the system along the sliding surface.

The neutral steering policy should be a continuous policy over the slidifgcgu Unfortu-
nately, the simple curve given by (D.1) has an undefined derivatiye-a0. Thus, we redefine the
local frame sliding surface as

0 —sign () cos™ (1= B0} g, <[5 < 5+,

o (5.0) = - f) g<m . (02
0 — sign () (% + M%yo — 1) otherwise
i oo
—3 §
-1 -0.5 0 0.5 1
Iz

Figure D.4: The smoothed sliding surface defined in (D.2).

184 (© 2007 David C. Conner

wherey, is the symmetric offset between two surfaces of the type defined in (B.1)) is function
that provides~? continuity on (D.2) at the point%igjb, ;éb}. For this thesisf; is a cubic polyno-
mial whose coefficients ang, are determined such that the sliding surface derivative is continuous
aty = g,. Figure D.4 shows the new sliding surface in thg — .%; plane.

Figure D.5-a shows the blending region to either side of the sliding surféeeblending region
is delineated by offsetting the sliding surface in thelirection +Af#. Figure D.5-b shows the
interpolating function used to provide? continuity of the steering policy. The blending function is

o\ 4 _~\ 6 B B
B(9)=5(i(0).0() = %%ﬁg0'4<§§) 7 (0)| <80 o

1 p@ﬁﬂ>a@

whereAdy is the height of the blending zone relative to the sliding surface. The d@ftoot can
be smoothed by increasing eith&fz or the width of the linear offsej,, at the cost of slowing
convergence to the reference path.

D.3 Cell Definitions

The cell boundary, which defines the neighborhoog ©f) where it is safe to invoke the steering
policy, is based on the curves defined above. Although the contrabapipis general, this thesis is
restricted to two curve types — straight line segments and circular arcs.

D.3.1 Line-segment Based Cell

For the moment, assume thiafs) is line segment so thét(j (s)) = O, and.Z (5 (g)) only varies
in position along the curve. Given the local frame(0) at the goal set centgr(0), and given a

robot posey = (z,y,), the local pose errar (g) = (§(g) ,7(g9),0 (g)) is specified. The value

vl

OB
Hard Right

ISH

T 05 9 05 1 Y g(g’fé) 05 1
z a
(a) O
Figure D.5: a) Sliding control surface with blending ranges shown. k)Blénding function used
to interpolate between maximal and sliding control.

(© 2007 David C. Conner 185

s(g9) = w whereL is the length of the cell ang?; (0) is thez-axis pointing out of the
cell. The lateral offsetig (g) = %3 (0) - (¢ — g (0)). The orientation relative to the local frame is
6(g)=06-10(0).

If the direction of travel is oriented with a positive projection along the pasithaxis, the in-
stantaneous motion induced by the sliding-mode based policy will decseBsecareful definition
of the cell, that is the local neighborhood aroun@), a control policy that satisfies the objective

of moving along the path while converging (@7 (g9) ,é(g)) = 0 may be defined for a variety of
systems. For the systems of concern in this thesis, the instantaneous velabitgys along the
body axis in thery-plane. Therefore, for forward motion, we cap the rang*a%b)‘ < 5, which

guarantees that invoking the steering policy will make monotonic progresg #ie planar curve.
The sliding surface should split the cell to prevent the control fromimtyithe system out of the
bounded) range. That is the sliding surface should not excegdwithin the cell boundary. For
a givenp, this constrains the cell width to the box shown in Figure D.6-a; for a givieithwthis
constraing.

To further define the cell boundaries, consider the six labeled regmmasin Figure D.6-a. On
the sliding surface separating the regions, the neutral steering cordedingd to drive the system
along the sliding surface toward tljes) curve; therefore the induced velocity is not transverse to
the sliding surface. As the actions are symmetric about the origin, we willatestr discussion
to the regions (A,B,C) above the curve. Further, assume the vehicle isirtgpf@ward; similar
arguments apply equally to reverse motion with minor changes to region lalhélse $ystem’s
(g (9) ,é(g)) coordinates are in bounded region A, the control action will induce motiorseh
instantaneous motion moves the system towards the sliding surface ortherassnmon face with
region B. The velocity will not exit the upper bound so long as the slidinéasaris less than the
upper bound. In region C, the system is naturally oriented toward the sidifigce and away from
the other bounding regions. Thus, once inside, the system will remainionr€until it converges
to the sliding surface. Region B is the problematic region, and must be fudhstrained.

For poses in region B, the system is oriented away from the sliding sui&bée the system
will not cross the given upper bound in region B due to the control theeslthe system toward

A
T T A) 7]
4 F B 1 QU(%>
. _ B
0 0 0 0 GLO pEJW
pL E C QUOH
C N\ /-
. E —z or z) D
D
-3 =
-T 05 p 05 1 —T =05) 05 1
p p
(@) (b)

Figure D.6: PF cell: a) Bounding box and control regions defined relédithe sliding surface. b)
Limiting surfaces defined in the loca# frame.

186 (© 2007 David C. Conner

the sliding surface, the control may cross the right side bounding widtlgiond3. To circumvent
this problem, the orientation at the extreme width must be less than zero, so that the vehicle is
oriented into the cell. Furthermore, the region B bound must be such thaidtesscan turn fast
enough to stay in region B until it enters region C. For this upper boundetuen to (D.1) and

definefy (§) = cos™! (1 - g’ﬁUUW> — 0y,;, where turning radius parametgy > puin Where
Pmin IS the minimum turning radius induced by the maximal steering poligy, < p is the cell
width, andéUoff is a offset buffer that guarantees the system is oriented inwards arthedndary.
The lower bounding surface is defined analogously; note that the appdower bounding surfaces
and widths are not necessarily symmetric. The values are constrairtenffdslsome freedom in
defining the cell provided the upper bounding and sliding surfaces tlaross or touch in the
¥ € |prLw, puw) range. Figure D.6-b shows the resulting limiting surfaces for the cell. Noge, th
definition ofé;; also constrains region A and C.

The policy must guarantee that the steering along the upper (lower) aoesavill keep the
velocity inward pointing with respect to the cell boundary. The simplest téstf®ce o > pmin,
and guarantee that the blending zone does not intersect the boundiagesu That i9,;; =

0 (—prw) — Uljmw (0) — Abg > 0 andfy;, = 01, (—prw) + UQW (0) + Afg > 0. Likewise,
éBL = UliiL (0) — AéB — éLog >0 andéBU = éUoff + U_1|PUW (0) — AéB > 0.

Figure D.7-a shows the cell boundary and blending surfaces. Thelemgell, formed by
extruding the cell boundaries along thés) curve, is shown in Figure D.7-b. For any configuration
within this cell, the smoothed sliding mode based policy will keep the vehicle bodljgeoation
within the cell and moving toward thg(0) point.

The cell pictured in Figure D.7-b is functional, but is not conducive to fg@tig a prepares
relationship. While a small cell, that is a narrow “tube” about §t{e) curve, can prepare a larger
cell, this does not generalize the funnel metaphor discussed earlieis Enth we add a constraint

based on a Lyapunov-like function defined in our error coordinafgs = (5 (9),7(9) ,é(g)).
Let

(D.4)

™

SR

B}

Figure D.7: PF cell: a) Limiting and blending surfaces defined in the lgcélame. b) Cell formed
by extruding the sliding and limit surfaces along a straight line.

(© 2007 David C. Conner 187

wheres, is the length scaling and’ is a positive definite weighting matrix. A level set Bfat a
givens is an ellipse in the local7;-.7; frame; the elliptical diameters expand along the length of
the cell. Apply the restriction that (¢g) < Ve to our cell, we restrict the cell definition as shown
in Figure D.8. Care must be taken to verify that the induced velocity is inwairttipg along the
portion of the cell bounded by = V_.;;. As the level set is a smooth functiongfand the policy is
piecewise smooth over the cell surface, the conditional invariance cearified as described later.

For convenience, the free parameters for the line-segment basedl Pinckiding those of the
example shown in Figure D.8 — are listed here:

Table D.1: Line-segment based PF cell parameters

| Variable | Description | Range | FigureD.8 ||
s Arc length parameter [0, 1] N/A
Jeoal Configuration of goal set center € Greo (0,0,0)
L Length along negativeZ; (0)-axis (0,00) 1.51 m
D Radius of curvature fas limited by U/ 2.45m
Jo Smoothing offset (0,00) 0.025m
b Smoothing width Calculated 0.0501 m
0y Smoothing height Calculated 0.143 m
Abp Blending offset (0,%) o~
{pv,,pr,} | Cellwidth (0,9, +p) | {0.125,0.125}
{pu,pL} Cell limit surface “curvature” (Pmin, 00) {2.45,2.45}
{éUoﬂ, éLoﬂ} Cell limit surface offset (0,7/2) z
Veell Funnel level set value (0,00) 0.5

Figure D.8: PF cell: Funnel shaped cell formed by extruding the limit sesfatong thej (s) path
and cut by the Lyapunov-lik& (e) = V.. level-set. The goal set boundary is shown as a thick
light colored ellipse.

188 (© 2007 David C. Conner

D.3.2 Circular Arc Based Cell

The approach to defining the circular arc based cells is exactly the samelmefsegment based
cells. In this case, however, the frame derivatives along the path arearo; therefore, the simple
invariance analysis based pp > pwin IS insufficient to guarantee safety.

The cells are defined in the local pose error coordinatgs = (5 (9),7(9) ,é(g)) given a

robot posg = (z,y, #), goal locationj (0), and goal frameZ (0). Letr (¢) denote the vector from
the center of curvature gf(s) in workspace to the robdtz, y) position, andy the angle between
p (0) and the robot position. This is shown in Figure D.9. The veet@y) intersects the defined
pathp (s) atp (s), wheres (¢g) = ¢ (g) /¢ and defines the “length” of the cell; that 8> defines
the arc length ofj (s) for s € [0, 1] wherep is the radius of the arg(s). The curvature of the arc
may be positive or negative, and is determined by the sigh d¢f ¢ < 0 the rotation is clockwise
as shown in Figure D.9 angl(g) = p — ||r (¢9)]]; if ¢ > 0 the rotation is counter-clockwise from
the goal andj (g) = || (¢)|| — p. The orientation error i§ (g) = 6§ — 6 (0) — 55 + 2k, where the
integerk is chosen to yield a continuous function over the cell.

A necessary condition for a valid cell, that is one whose domain of attractioongpasses a
non-zero volume of pose space, is that the radius of the circulap,dscgreater than the minimum
turning radiuspmin. Furthermore, the size of the boundgd slice will be smaller than for the
largest linear cell of the same system. This due to to impact of the frame tilers;eSection D.4
presents the formal calculations for the system models used in this thesis.

For tight turns, the ability to define significant funnel-like restrictions via Jis4imited due
to the necessity of maintaining conditional invariance and#heerivatives. For this reason, the
approach taken in this thesis is to use small tubes around arcs to pregardudes around either
line segment or arc based cells, and use the funnel-like line-segmernt taElteto prepare the
smaller arc based cells.

Figure D.9: Layout of the circular arc based cells.

(© 2007 David C. Conner 189

Figure D.10 shows an example cell; the relevant parameters are showlblénDli@. The only

changes relative to Table D.1 are the arc aggénd the radiug.

Table D.2: Schedule

| Variable | Description \ Range | Figure D.10]|
s arc length parameter [0, 1] N/A
Jeoal Configuration of goal set center € Gyree {0,0,0}
P Radius of curvature (Prmin, 00) 0.7m
P Arc length of curve (radians) (—m,) —1.0175
L Length along path (s) Calculatedb ¢ | 0.357 m
p Radius of curvature fos (0, 00) 2.45m
Jo Smoothing offset (0, 00) 0.025m
b Smoothing width Calculated 0.0501 m
Oy Smoothing height Calculated 0.143 m
Afp Blending offset (0,%) ~
{pv.,pL,} | Cellwidth (0,70 + p) 0.11m
{pu,pL} Cell limit surface “curvature” (Prin, 00) 2.45m
{éUoﬂ, éLDH} Cell limit surface offset (0,7/2) =

As with the line segment based cell, the arc based cell can satisfy the ragoiteeof Sec-
tion 3.3. The test for inclusion is essentially the same; only the mapping into tHe(l@gaﬂé)

Figure D.10: PF arc-based cell formed by extruding the limit surfacegdlay (s) path.

190

(© 2007 David C. Conner

frame varies. The expanded cell used to verify safety is likewise wehe@fiThe cell is limited in
a way that guarantees instantaneous progress along the curve, stinfiaite guaranteed provided
conditional invariance is verified. The test to verify conditional invareigslightly more com-
plicated due to the derivatives associated with the moving frame, but is nadhetiactable. The
remainder of this appendix presents the specific calculations for eagmsysodel required for a
circular arc based cell.

D.4 Policy Designs

This subsection presents the equations used in the control policy calcsjdkiempolicies determine
valid inputs from the bounded input 9¢t Recall from Chapter 5 and Appendix A, that the global
body pose velocity is given by = A (¢) 7. In the remaining discussion, we assume a first-order
kinematic system with- = w, which impliesg = A (¢) u. This section begins by providing an
overview of the calculations that apply to all of the robot models consider¢tis thesis. The
calculations and control strategies used for each model are then defined

The variable structure control approach depends on a neutral stgmicy that causes the
system to follow the sliding surface. Since the mappih@;) is invariant under rigid body pose
transformations, and the control surfaces are defined in the local feévee derive the controls
in the local frame. Fofj = (:Z' (9).7(9) ,é(g)), letg = .7 (g) - g; that is, is the pose velocity
expressed in the local frame. For the neutral steering policy to keep #hensyn the sliding
surface, the general constraintfigy (§) - g = 0 for all § = (0,g(g) ,é(g)) € ¥71(0). Letting
w=Dz¥(g(g)) - A(q) whereg = (g,r), w defines an equality constraint on the base velocities.
In other words, for a given pose on the sliding surface, to remain onlitiegssurface the base
velocities must lie on the line through the base tangent space origin defingd8yythe chain rule,
D% (g (9)) = DeX - Dge. The firsttermD. X (gt) = [0 Dgo () 1] is piecewise smooth. The
latter term,

D;s Dgg D9~§
Dge = Dg}g Dg:lj Dégz s
Dz0 Dg0 Dg0

where D; denotes the derivative along; is calculated from the mappings given above. For the
line-segment based policy,

1
-1 00
Dse=|0 1 0],
0 01
while for the arc-based policy
L5 00
plél
Dge=| 0 1 0f,
_1 9

The change irf as the robot moves along; tangent to thej (s) curve means that the robot
must steer just to maintain its current error. While the line-segment baseg paticeason about
invariance based only on geometric considerations of the cell bounddrthaminimum turning
radius, the arc-based policy must consider the kinematic model over theTted.thesis uses a
variety of kinematic systems, each with differing control inputs, therefach system model must
be discussed separately.

(© 2007 David C. Conner 191

D.4.1 Unicycle System / Vertical Rolling Disk / Differentid-drive system

For the kinematic systems considered in this thesis, wiered (¢) u, the mappingd (¢) is differs
only by a constant wheel radius factor for the kinematic unicycle systehvartical rolling disk
models defined in Appendix A. The mappiny(q) for the differential-drive system differs from
these two only by a constant change of coordinates. In each case,ppeémanly depends on the
body orientation; to make this point clear, we abuse notation andl (€} = A (q).

The neutral steering policy defines a line through the input space azigiy), = D% (g (g)) -

A (é (g)). Any input chosen fron/ alongw (g) -« induces motion that holds the valueX{g (¢))

constant. Depending on the signX{g (¢)), one half of the input space divided by(g) - u = 0

will decrease the magnitude bfby moving the system pose toward the sliding surface. We modify
the sign ofw such that the negative half-space moves the system pose toward the slidicg.

Let wiinm (¢) define a constraint within the~ half-space that defines an aggressive steering set of
inputs in the direction that decreasgs(g (¢g))|. That is,wy, specifies hard left or hard right as
appropriate. Define the control constraint as

we (9) = wim (9) - B(g(9)) +w(g)- (1 —B(g(9))) -

These constraints are shown in Figure D.11.d.et d,, (g (¢)) define a distance along the negative
of thew, vector, and define another constraint surface. parallel tow,. at a distance,, along the

—w vector. As the pose approaches the sliding surf&ce; 0 and the control constraini, — w
andd, — €, wheree > 0 is a small numbét In this case, the control becomes less aggressive,

2As d.. approaches the limiting small number, the constraint moves /2 in the positivew, direction so that the
optimization lies on the originab constraint surface

u2

U1

Figure D.11: For the bounded steering unicycle and differential-dggeems, the control policy
constrains the input set based on the neutral steering policy and blefndictgpn B. Any input
taken from the dark gray region laldé! will move the system toward the sliding surface.

192 (© 2007 David C. Conner

and set of valid control inputs is constrained to lie along the line defineg Isych that the system
follows the sliding surface. As the pose departs the blending zone aaytfre sliding surface,
B — 1, andw. — wyim, andd,, increases to a distance equal to the diametéf.of

The control input is chosen frotd. C U betweenw,. (¢g) and—w, (g), as shown in Figure D.11.
For the case wher# is a convex polygon, the regidd. is also a convex polygon. This lends
itself to simple convex optimization techniques [10]. Each edge in the boumdeédis treated as
a half-space constraint along with (¢) and—w. (g). The costs associated with approaching each
constraint are weighted. Most constraints have costs that increddy rap the input approaches
a constraint, but are negligible away from the constraint. A constzaify) that is orthogonal to
we (g) is added to the input constraints as shown in Figure D.11; this constrairgdsiated with
a linear cost function that acts to push the input away from the origin. i$haf (¢) acts to prefer
rapid motion. A quadratic term is added that weights changing the input fropmetsous value,
which provides a measure of smoothing to the approach. Additional terneasilg added to the
optimization cost function. As long as the input is taken frdm this control policy induces the
correct behavior over the cell.

D.4.2 Ackermann Steered Car-like system

The mappingA (¢) for the Ackermann Steered car-like system depends on the steeringsangke
variable. This is a fundamental difference with the models for unicycle #fetehtial-drive sys-
tems. In the case of the Ackermann steered car, the neutral steering igsofjoyerned by the
steering angle, and is not directly tied to the inputs.

For the Ackermann steered car, the sliding surface is used to defineraneg steering angle
over the cell. Define the neutral steering angle, that is the angle that¥igldsy)) constant as the

system moves as,. (§) = tan—! % whereg (g) = (O,gj(g) ,é(g)), X' = %@ andY’ =

—D;¥ (§) cos <é (g)) — Dy% (§)sin (é (g)). Let ¢1im (§) denote the absolute steering limit for the
given vehicle, with the sign chosen based on whether the vehicle shoetdigta or left based on
its direction of travel and relationship to the sliding surfaceplfs (§)| > |P1im|, thend.es (§) =
sign (éref (9)) |¢um (9)]- This is necessary because the reference limit can be exceeded ifiitle ve
is on the inside of a sharp turn; limiting the reference in this case will allow theogaove to the
arc, where the steering is within bounds. Defing, (§) = érer (§)- (1 — B (§)) +¢1m (§)- B () to
be desired steering angle over the cell. Steering according to the magpind=; — [—®1im, Olim]
will cause the system to move toward the sliding surface and al¢ngtoward the goal set.

In the case where the current steering angle does not match the ddeeedgsangle, the
control policy must steer the vehicle in such a way that the vehicle cors/¢ogthe goal set and
®des Without exiting the cell. Over the boundary of the cell, defing; (§) as the steering angle at
which the system would exit the cell; that is, the policy would violate conditionalriance. Define
the steering margin,

gbmargin = mH:l |¢exit (?] (g)) - dees (g (g))| :
geo=

k3

Define the steering errofe,; (g,7) = ¢aes (G (9)) — ¢ for the shape variables = (v, ¢). If

|berr (9,7)] < Pmargin, then the system can safely move. Our control policy design is therefore a
switched policy. If|¢err (9,7)| > dmargin, the system stops and steers ufatik, (g,7)| < Pmargin-

If |derr (9,7)] < dmargin, then the control policy specifies inputs such that the vehicle steers fast
enough thaioe (g,)| monotonically deceases as the vehicle moves through the cell.

(© 2007 David C. Conner 193

Following the constrained optimization approachJ€t) define a line through the input space
origin such that any input along this line will hold the steering error constdrg.error time deriva-
tive Gerr (g,T’) = QPdes (g (g)) —¢ =0, with (z)des(g(g)) = D§¢des (g (g)) g (g) - Dg}d)des (g (Q)) ’
A(@)wwith § = (3.7) andu = (1,6); thus,w (9) = Dydaes (3(9)) - A(@) — [0 1]. One half-
space defined by (g) will decrease the error magnitude; the other half-space will increasertire e
magnitude. It~ decreases the error magnitude, thenlet w, otherwise let. (¢) = —w (g), SO
that the negative half-space decreases the steering error. &ivgrdefined appropriately, define
—w. (g9), andws (g) as in Figure D.11. The distandg (¢) between the control constraintsu,. is a
function of the steering error; that is, the constraints approach oribexras the steering error goes
to zero.

Unlike the shape variables for the differential-drive and unicycle motledssteering angle is
bounded. The bounds include absolute mechanical boundssgs,jrwe also allow safety bounds
that require slower speeds for hard turns. To guarantee that thimgtaegle constraints are not vi-
olated, the steering constraints are mapped to velocity constraints givemahoontrol time step,
At. Assume the steering angle constraints are represented by a collectialft gffdice constraints

each defined by a point, = (%, </>s) and normal, = (ny,ne). The steering rate constraints

are given by, (¢) = (s, 252) and normah, (¢) = (%2, n,). These constraints guarantee that
the steering angle will not exceed the steering limit during the next time step. Vdisie thdded
constraints, the input optimization chooses an input from the valid set; thewnlpspecify a for-
ward speed and steering rate such that the steering error monotonicaiiaskes and the system
converges to the sliding surface while moving algng) towards the goal set.

D.5 Policy Validation

Implicit in the constrained optimization approaches defined above is the exdstéa valid input;
that is, the set of valid input&{., is not empty. During the policy instantiation, the policy must be
validated to insure that such an input exists for all poses over the celtaifip\ge assume that the
p-terms used to bound the cells and define the sliding surface is larger thaimihaum defined by
the input constraints.

D.5.1 Collision Free

For a cell to be valid, it must be collision free; that is, it must be contained ifréfeepose space.
This thesis uses the cell boundary normal to define a mapping from celdbopto expanded
cell boundary based on the body shape. As the cell boundary is psecemooth with well-defined
surfaces, the expanded cell used to verify safety is well defined.s€btion presents the calculation
of the boundary normal used for policy validation; for details on the collisésts see Appendix C.
As the cell is a tube around the curgés), this suggests a cylindrical parameterization of the
cell boundary surface. Lste [0, 1] be the length along the cell defined as before,abd an angle
around the local7;-axis measured relative to the loc4l; axis. Letr (s,) denote the three-vector
specifying the cell boundary in the local frame; by definitiop(s,v) = 0. See Figure D.12 for
details. In the local frame, the boundary paiitk,) is determined for the piecewise differentiable
curves that define the cell boundary. The boundary point in the paseeds given by, (s,v) =
g (s)+ F (s)-7(s,v). For some of the limiting surfaces, for example the Lyapunov-like level set,
the width boundary, and the upper bound-d}, 7 is available in closed form givenand~; for the

6y anddy, 7 is determined numerically. Giventhe derivatives are determined in closed form.

194 (© 2007 David C. Conner

™

Figure D.12: PF cell boundary definitions for defining parameterizecsetation.

The normal of the parameterized surface representation is giveiy(s, 7)) = Dsge X Dy ge-
The derivatives in terms of and~ are calculated according to the product rule; the derivatives of
each component are well defined almost everywhere. Note tha# = 0 and D, = 0 by
definition, so thaiD.g. = .% - D7 (s, 7). The termsD,g andD,.# are defined by the planar curve
used to specify the cell. At the interface between limiting surfaces, theatige\D.,7, and hence
the normal, is not well defined. The terf7 is zero along the cell boundary surface not limited
by the Lyapunov-like function; along the surface limited by the Lyapunogiknction it is well
defined. Thus, the normal can be calculated across the surfacegdéfimed by individual curves.
The parameterized representation yields a parameterized represergatioa éxpanded cell used
for collision testing.

D.5.2 Finite-time Convergence

The policies defined above guarantee convergence to the goal sétdrifire. The input: = 0 is

not allowed in the constrained input ¢ét Thus, the kinematic systems are always moving. In the
case of an Ackermann steered car with significant steering error, iteedteering rate will bring
the system into the valid control Zofig.,| < @margin iN finite time. For all the systems described
above, the pose velocities are such that 0 for all valid inputs. This is due to the pose limitation

of ’5‘ < £7 and the non-zero control input. Thus, the system will reach 0 in finite time.

Note, the steering policy does not guarantee convergen%g,ﬁ)} = {0,0} ats = 0; only that the
system is guaranteed to cross thg-.7; plane that defines the cell goal set. Conditional invariance

guarantees that the policy stays within the cell, and is therefore within thesgblabundary.
D.5.3 Conditional Invariance

Invoking the steering control policy over the cell induces motion that mdeegéheg (s) curve to-
wards = 0; to show that the system enters the goal set and safely remains in the cetinthtonal
invariance requirement must be satisfied on the cell boundary.

(© 2007 David C. Conner 195

This property is dependent on the cell parameters chosen. Genarathyefbasic line-segment
based cells shown in Figure D.7 can be verified geometrically providgd, 5;, are properly de-
fined. The Lyapunov-like limiting surface, as do arc-based cells in génese numerical validation
using the steering policy.

Verifying the conditional invariance requires knowledge of the surfamenal across the cell
boundary; the normal is calculated as described in Section D.5.1. Tha@@rized representation
allows the boundary poses and normals to be checked for conditiongakimv@ using the policies
defined below. Since the parameters are piecewise smooth, then sarfaeesenable to numeric
validation.

For the cell to be conditionally positive invariant, the induced velocity alongétidooundary,
excluding the goal set, must be inward pointing. That is,7tg) - ¢ < 0 wheren (g) is the
outward pointing normal defined for the cell boundary. Thus, the comditiovariance requirement
is restated as a input constraintg) - A (q) (U # 0. In other words, along the cell boundary, the
control policy design must chosec n (g) - A(q) U.

Given the cell boundary parameterizeddsnd-y, conditional invariance requires that

n(g(C,)" Ag(¢v).r)u<0 (D.5)

for all ¢ and~ over the cell boundary. Lebz, (g,7) denote the action of the policies designed
above such that = ®z, (g, r). Define

L (Ca ’Y) =n (C?rY)T A ((g (Ca ’Y) ,’f’des)) : (I)Ei (g (C’ 7) ’Tdes) ’ (D6)

wherergyqs represents the shape variable specified by the control policies. Fermekn-steered
SYStemsraes = rdes (9) = (*, Pdes (¢)) With x meaning that) is arbitrary. For car-like/differential-
drive systems qes = (, *).

L is the result of the “best” input choice at a particular pose; the more negat value off,
the more inward pointing the pose velocity is along the boundary. Althoughinear, the function
L (¢,~) is piecewise smooth and generally “well-behaved” for the mappirig). A valid cell
satisfies the constraint

max L ((,v) < 0. (D.7)
¢

Once the policy free parameters are chosen so that (D.7) is satisfiethewvesil boundary, the
policy satisfies composability requiremefiy andiii .

For Ackermann steered cars, the steering mapgin,in (¢) is calculated during the conditional
invariance tests.

D.5.4 Simple Inclusion Tests

The cells have simple inclusion tests, and thus satisfy composability requirdiviedescribed
in Section 3.3. A given robot posgis mapped to the local pose error coordinates using simple
calculations for the line-segment and arc-based cells. Recall, that tirecenrdinates are given

by e (g) = <§(g) 7 (9) ,5(9)). The robot pose isinthe cellif < 5 < 1, —pr, < 7 < pu,»
01 (5) < 8 < Bu (5), andV (5,5.0) < Vean.

Since the cell is defined in alR?® chart of SE(2), we must also test for inclusion based on
g=1{z,y,0 + 2nw} wheren € {—1,0,1}.

The policies can use a more conservative inclusion test during policy sugtbly decreasing
the policy width parameters;,,, andpy,, , which shrinks the ‘tube’ around the curggs).

196 (© 2007 David C. Conner

D.6 Conclusion

PF policies satisfy the composability requirements, and are therefore cdogasaur hybrid
control framework. The policies encode basic behaviors for robagaton: turning in arcs and
moving straight. The policies admit tractable validation tests for instantiating policies

The path following approach that these policies are based on is moreabémesr just line-
segments and circular arcs defined here. A natural extension wouhe died policies for cycloids
and continuous curvature arcs [95]. These would allow smoother trarstiietween policies; the
difficulty comes in determining the for a given pose. The line-segments and arcs can do this in
closed form; continuous curvature arcs would require polynomial rodirfg techniques.

(© 2007 David C. Conner 197

199

Appendix E

‘SQ’ Style Control Policies

This section develops a class of generic policies based on a parametefeesentation of the cell
boundary. First, the basic cell definitions are presented. Given thdefalition, the chapter next
discusses how the four composability requirements from Section 3.3 will lifiede These are
discussed before the specific control design in order to define someuseah# the control design.
The chapter concludes with a specific control design for these cells.

E.1 Cell Definition

This policy defines cells such that they fan out from the goal set usirgnarglization of a su-
perquadric surface [51]; hence, the name ‘SQ’. The cell is defiglative to a frame attached to the
goal set center as described in Section 5.3.

We define the generic cell boundary in local coordinates tihsmooth two-surfaces embed-
ded inIR®. The intersection of the cell boundary with a plane orthogonal to the ¢entisiis a
simple closed curve that may be parameterized by the orientation aroundakis. This suggests
a cylindrical parameterization for the generic cell boundary.{lle¢ a scalar encoding the “depth”
of the cell along the negativé-axis, and lety be a scalar encoding the angle about the lataixis.
Define a generic cell boundary poimpt,in these local coordinates as

-
p(C7) = | p(¢,7) - (cos B cosy — ¢ sin B siny) | € RP. (E)
p(C,7y) - (sin B cos~y + ¢ cos 3 sin7y)

The equations in parenthesis encode an ellipse with eccentieity: < 1 rotated bys about the
central ') axis relative to the positivg’-axis, as shown in Figure E.1-a. With< ¢ < 1, the
conditional invariance velocity constraint(g) - ¢ < 0 requires that-3 < 3 < 0. The function
p (¢,) governs the radius in the local cylindrical coordinate system as the systess by along
the negativer’ axis, as shown in Figure E.1-b. This representation is an extension to titasta
superquadric representation becapsmay be a function of botly and~ [51]. The goal set is
defined at{ = 0. A pointp (¢,~) on the cell boundary in the local frame is mapped to the pose
space ag (¢,v) = g (p(¢,~)) using the generic cell transformation (5.2) from Section 5.3.
There is freedom in defining (¢,~) provided the velocity constraint (¢) - ¢ < 0 can be
satisfied for all points on the surface. We choogefanction that uses two continuous, piecewise-
smooth segments that correspond to the two surface patches — a futirmet@m — defining the cell
boundary. The segments are shown in Figure E.1-b. In the portionspomding to the funnel, let
py (¢,v) be a monotonically increasing function drthat governs cell growth asincreases away

p(C.7)
0 A
Ygoal '
Y
y/
< (I >
g 3 » i«
a) Elliptical Parameters b) p Parameters

Figure E.1: Schematic representations of the generic SQ cell. Some of the impartameters are
labeled.

from the policy goal setp = p; in this portion. The portion op (¢,~) corresponding to the cap
section monotonically decreases from the maximal valyeydb zero at the maximal extent qf
Formally, define the complete function as

PN s () \/(CM_ciLf)fc_L(C_CL) CL<C<Cu

The~ dependency ip allows radial asymmetry to be built into the cells, proviggds monotonic
in ¢. This paper defines three basic cell shapes by defining three diffgrémnctions; typical cell
shapes for the three functions are shown in Figure E.2.

The first cell shape, as defined by = py,, results in the simple symmetric funnel shapes
shown in Figure E.2-a. Let

Pfi (477) =R, + Re (COSh (RC> —1>)

r

(E.2)

where R,, is one-half the length of the major axis of the goal set ellipse, @n@nd R, govern
the rate of expansion. Th@sh function gives good results, but other monotonic functions could
be used. For this choice, the cell size and shape is governed by thragtara ofp s, , which are
R,, R, andR,., along with the parameters of the ellipsand 3, the length of the celf;, and(,,,
and the location and orientation of the goal set giveryy;. At ¢ = 0, the goal set is an ellipse
like that shown in Figure E.1-a. The composability requirements from SecitBowiB dictate how
much the cell can grow, and its shape by limiting the parameter values.

The second cell shape, as definedby= p;,, is used to generate a one-sided asymmetric cell,
as shown in Figure E.2-b. Let

s (C.7) = Ro+Re <cosh <}§> _1> .1+coséfy_%)7

T

200 (© 2007 David C. Conner

3D View

a) Cell usingo, b) Cell usingp ¢, c) Cell usingp s,

Figure E.2: Example cells for eagh showing 3D and-y views.

whereR,, R., andR, are as defined above, angis used to localize the asymmetry relative to the
angle about the central axis. As with the first function, the goal setab is an ellipse.

The third cell shape, as defined py = py,, is used to generate a two-sided asymmetric cell,
as shown in Figure E.2-c. This cell is designed to generate a more aggress than the first two
cells allow for a given input set. Let

pfs (Cy) = (Ro + R, (cosh (}i) _ 1)) .
(1 + K, exp ((cos (v = 7g,) — 1)2>

O

+ Ky, exp ((cos (v 0792) — 1>2>> ;

whereR,, R., andR, are as defined abov&l,, andK,, specify the relative size for the two wings
of the cell,s,, ando,, specify the width of the wings, ang,, and-,, localize the wings relative to
the angle about the central axis. Unlike the first two functions, the goaf g, is not an ellipse.

E.2 Policy Validation

Given the classes of generic cells defined by the thyefeinctions, it must be shown that particular
instantiations of the cells satisfy the composability requirements given in SecBon 3

(© 2007 David C. Conner 201

E.2.1 Collision Free

We verify that the cell is contained in the free pose space, and is theisdts, using the expanded
cell approach described in Appendix C. The test is for a specific delyjasparticular choice of cell
parameter values,R,, R., R, c, 3, (1, Car } and optionally{~,} or { Ky, , Vg1, g1, Kgos Vgor Ogo -
Using the parameterized representation of the cell boundary given iy {Belapproach described
in Appendix C generates a representatiorRaEE;). The setR (Z;) is tested for intersection with
any obstacle. If intersection occurs, the cell parameter values must bgedod

The surface normal required for the expanded cell calculations is wahiatl over the para-
metric surface patches that define the cell boundary. The normal idataltdor the given set

cell parameter values as((,) = %. Both g (¢,~) andn (¢,) are piecewise smooth
S v

functions. Given the implicit representation of the robot body boundiaeycell boundary point is
analytically mapped to a point iR (Z;), which allows the collision tests outline in Appendix C.

E.2.2 Conditional Invariance Test

During instantiation, the cell parameter values must be selected so that tha sgstem can gener-
ate velocities that enforce conditional positive invariance as descril&etiion 3.3 and Section 5.4.

For the cell to be conditionally positive invariant, the induced velocity alongétidooundary,
excluding the goal set, must be inward pointing. That is,7tg) - ¢ < 0 wheren (g) is the
outward pointing normal defined for the cell boundary. Thus, the comditiovariance requirement
is restated as a input constraint(g) - A (¢) (U # 0. In other words, along the cell boundary, the
control policy design must chosee€ n (g) - A (q) (U.

Given the cell boundary parameterized¢gnd-~, conditional invariance requires that

n(g(C)" A(g(¢7).r)u<0 (E.3)

for all ¢ and~y over the cell boundary, ang= (g,r). Let &z, (g,r) denote the action of the as yet
undefined control policy such that= &z, (¢, 7). Define

L) =" AUg(C7) Tdes)) - @2, (9 (C.7) s Tdes) » (E.4)

whererges represents the shape variable specified by the control policies.

L is the result of the “best” input choice at a particular pose; the more negatg value ofl.,
the more inward pointing the pose velocity is along the boundary. Althougiinear, the function
L (¢,~) is piecewise smooth and generally “well-behaved” for the mappirig). A valid cell
satisfies the constraint

max L ((,v) < 0. (E.5)
¢

Although non-linear, the functioi (¢,) is piecewise smooth and generally “well-behaved”
for the mappingA(g); therefore, it is feasible to verify that (E.5) is satisfied for a given $eet
parameter values. Figure E.3 shows a typical constraint surface foelllrghown in Figure 5.9-a.
The ridges shown in the figure are due to switching behavior in the minimizatibo¢hars when
the cell boundary normal is parallel to they plane; that is the component in theirection is zero.

Once the policy free parameters are chosen so that (E.5) is satisfiedntfiganal invariance
requirement is satisfied. The companion requirement of finite time convagemiscussed with
the specific policy designs.

202 (© 2007 David C. Conner

HWH b
| \\ \\\\\\\\\\“&\\\\\\‘\“\“\\ﬁ\\:\g\.\

\\\
J

Figure E.3: Constraint surface fér(¢, v) from (E.4).

E.2.3 Simple Inclusion Tests

Given a cell, the system must check if the current robot position andtatieng < G is inside the
cell. The inclusion test makes use of the cylindrical representation of th&oeenqg = {g,r} € Q
and a selected cell, represenin the local cylindrical coordinate frame of the cell &5, 74, pg},
where(, is the distance from,,.1 along the central axisy, is the angle relative to the ellipse major
axis, andp, is the radial distance from the cell's central axis. Since the cell is defirealiR? chart
of SE(2), we must also test for inclusion based@r- {z,y, 0 + 2n7} wheren € {—1,0,1}.

The inclusion test uses two steps. The first step test9that, < (s, if ¢, <00rfy > (ur
then the point is outside the cell. If the point passes the first test, then fimgH®undary point,

Figure E.4: Corresponding boundary points. Given a pgidietermine its local cylindrical coordi-
nates{(y, 74, g}, and find the corresponding point = {{4, 74, p»} ON the cell boundary.

(© 2007 David C. Conner 203

P = {4,774, pp} that corresponds t9 = {(,,v,, pg}, Where(, and~, are the same ang, is
the radius of the boundary point along the vector defined,tgnd~,. These points are shown in
Figure E.4. From (E.1), the value pf is given as

B p(Cgy7vg) - (cos B cosy, — ¢ sin 3 sin7y,)
Po(Corvg) = H [p(Cz,q/z) - (sin 3 cosy§+ c cos 3 sinwi)] H
) V142 — (2 —1)cos(27,)
7)

If pg < pp and0 < ¢, < (ar, the configuration is within the cell.

(E.6)

= p (CQa’YQ

E.3 Policy Design

This chapter discusses two potential control designs for these SQ cedlgd€d the conditional
invariance properties are satisfied, it is possible to define a sliding sudad use the variable
structure control approach of Section D.4. In this section, we focusdiffieaent technique based
on level set control. At present this approach is limited to systems where thy@mgal (¢) does not
depend on the shape variables; to stress this point, this section abusesraotd writesA(g) =
Al(q).

To define the control law, we use a family of level sets based on the ceiblaoyparameteriza-
tion given in (E.1). This family of level sets is used to define a control vd@tat that flows to the
policy goal set. Fop € Z;, the corresponding level set that passes thraugtust be determined;
represeny in the local cylindrical representation &f by g (9) = {{4. 79, Pg}

Recast the cell definition equations given in (E.1) and (E.2) in terrgs,@fnd(; to differentiate
the control level sets from the cell boundary. These parameters ttuwrelative length and size
of the internal level set. Ag € =;, the values will have the following relationship< ¢; < (, <
¢y < Cur. The family of level sets used for control are defined by (E.1) witty,, v4) = pr ({g:79)

where
2 2
V=) - G- ¢)
Cj\/ja _C/La ‘
That is, the control level set is governed the by (E.2), witi((} ,v,) using the same parameter
values as those defining the cell boundary.

First consider the casg,, = 0 and(}, = 0, the level set defined by, = 0 andv, € (—=, 7]
corresponds to the policy goal set. Increasjfg while fixing {; = 0, generates a family of level
sets for0 < ¢, < ¢}, that grow out from the goal; these are termeditireer level sets, as shown
in Figure E.5. By fixing(j, at its maximum valueg), = (yr, and increasing; , the outer family
of level sets grows; these are also shown in Figure E.5. Thus, giten= {(,,7y, ps}, the values
for ¢}, and(; must be determined such that the level set passes thipugbr this to be the case,
pr (Cg,vg) = pg; thus values for;, and(; that satisfy

Gr—) = (G —-¢)
ps (CLvg) \/(M C;)C’L(q 2 —pq =0 (E.8)

(E.7)

PL (Cgv’Yg) = Pf (C;:an)

must be found.
For configurations within the inner family of level set§, = 0 and(}, can be determined
in closed-form from (E.8). If the configuration is within the outer family ofdksets, as shown in

204 (© 2007 David C. Conner

nner level sets

/N

‘6 CgH

Outer level sets

Figure E.5: Level set definition for control

Figure E.5, the}, = {»s and we must determine the valueggfthat satisfies (E.8). Unfortunately,
(7, cannot be found in closed form. Fortunately, (E.8) is a monotonic funcfigh,avhich admits
a simple numeric root finding procedure.

Given the values of), and(; , the level set normal is used to define a constrained optimization
over the input space. The level set normdl,,~,) is defined as in Section E.2.1 using (E.1) and
(E.7). The simplest constrained optimization is

u” = argmin [n (Cg,79) - A (9 (Cg,79)) ul 8812 (Cg,79) - A9 (G 7g)) u < 0. (E.9)

ueld

For a convex polygonal input séf, the solution to this optimization will lie at the verticesiaf To
smoothu*, the cost functionn (¢g,v4) - A (9 (¢4.74)) u], can be augmented by a simple quadratic
term. Let®=, (¢) denote the control policy using this strategy; that is ¢z, (¢) = u*, whereu*

is defined by (E.9).

Usingu = ®z, (g) as the control input drives the system from the outer level sets to the inner
level sets, and then continuously on to the goal. We force all the innerwgadlevel sets to satisfy
the conditional invariance requirements for (E.5) at every point in thewkIth guarantees that a
solution to (E.9) exists. The body velocify= A(g) - ®=, (¢) will bring the system configuration
to a “more inward” level set; thus, the system moves a finite distance closer gm#h. Although
a formal analytic proof is lacking, experience shows that if the outermestdet corresponding to
the cell boundary satisfies conditional invariance urdgler(g), all interior level sets will also satisfy
conditional invariance. This can be checked for various valuég,adnd(;, during deployment.

E.4 Conclusion

SQ policies satisfy the composability requirements, and are therefore cabipasour hybrid con-
trol framework. The policies are naturally shaped like funnels; howeherconditional invariance
constraints limit the size and shape of the cells. Thus, they can be limited, fiadledo define as
tight a turning radius when compared to the PF policies.

(© 2007 David C. Conner 205

207

Appendix F

Robots Used in Demonstrations

The hybrid control approach advocated in this thesis, which is desdrsgthpter 3 and Chapter 5,
has been validated on several robot systems in different environmattsugh the techniques
apply to any single-bodied purely-kinematic system, this thesis uses thiterijgairobot models.
Two are real differential-drive robots that vary in size and shapehiheis a simulated conventional
Akermann-steered rear-wheel drive car-like system. This appenaliides details on the particular
robots by discussing the body size and shape, the control limitations, arelingpassumptions.

F.1 ‘Deminer’ Differential-drive Robot

The first tests use the standard differential-drive robot shown in &igLr, which has a convex,
roughly elliptical body shape. This is called the ‘Deminer’ robot. To simplificakations of
R (Z;), the composite set of points occupied by the robot body over all positr@heréentations in
the cell, the robot body and wheels are tightly approximated by an analyticectigogtered in the
body coordinate frame; this is shown in Figure F.2. The length of the majomamal axes of the
bounding ellipse aré.12 and0.68 meters respectively.

The robot is driven by the larger front wheels. The wheels are indtig controlled using PID
velocity loops that send commands to individual H-bridge amplifiers. Theadoop runs at 100
Hz, with velocity feedback given by encoders attached to the motors. yBbens assumes that the
velocity control is fast relative to the system dynamics.

Figure F.1: ‘Deminer’ laboratory robot

meters

-0.5 0 0.5
meters

Figure F.2: ‘Deminer’ laboratory robot bounding ellipse

The hybrid control policies use the simplified kinematic unicycle model for obnirhe con-
nection is given by
cosf 0
A(q) = |sinf 0
0 1

The inputsu = [v w]T are forward velocityy, in meters per second, and turning ratein radians
per second. Given a specified input, the desired wheel velocities menileed. The policies could
have used the differential-drive model as the models are interchand®ablesimple change of
coordinates; the kinematic unicycle model was initially chosen because ofrtd dnalogy to
body velocities.

0.15¢
0.1f
v
5 0.05f
c
@
-‘3 of —O— Aggressive
3 —B— Cautious
-0.05¢ —#— Reverse Aggressivie
=== Reverse Cautious
-0.1f
-0.15¢
-0.2 . ' ' ' '
-0.4 -0.2 0 0.2 0.4 0.6

v meters/s

Figure F.3: Four sets of bounded steering inputs used in Deminer exp&imen

208 (© 2007 David C. Conner

The inputs, which induce the body pose velogjty= A (q) u, are chosen from one of four
bounded input sets shown in Figure F.3. The system changes directswitoling between “For-
ward” and “Reverse” input sets; each having an “Aggressive” ‘@ualtious” set of values. The
numerical values are based on the velocity limits of the motors, and scalefbbaekitious modes
and the reverse input sets. Each policy is associated with a specific diomgmit set, which al-
lows the system to account for local conditions. Although the robot isldad zero-radius turns,
the input bounds are chosen to model a conventional car-like system outidbd steering. The
input bounds are convex polygons; this restriction is for computatiomalezoence and allows the
convex optimization technique discussed in Appendices D and E. The tiestti@ polygons is not
fundamental.

The robot sensors consist of optical encoders attached to the drieesrand a single forward-
facing camera. The encoders are used to provide velocity feedb&ath v turn provides the
inputs for a dead-reckoning pose estimation. An existing vision based latafizscheme was
tested on the system, but the accuracy was insufficient to allow for indnagation in cluttered
environments. For this reason, the early experiments used pure deadirey for localization.

The robot software executive is coded in C++ within the modular RHexlaiméwork [119].
The system includes modules for velocity calculations and localization, assviéédP1D velocity
control modules. The executive itself is coded as a RHexLib module. On irgti@liz, the module
reads a set of configuration files that specify the input bounds, theymt#fmitions, the initial pose
of the robot, and the desired goal policy. The executive then uses ameptiation of the mini-
max D*-lite algorithm to order the policies [81]. During execution, the exeeuthooses the active
policy and calculates the desired inputandw. These are converted to individual wheel velocity
commands that are passed to the PID velocity control modules. The entieensyss at a 100 Hz
update rate on a Pentium-based PC-104 computer operating under thepg@hiXireg system.

(© 2007 David C. Conner 209

F.2 ‘LAGR’ Differential-drive Robot

The LAGR robot, shown in Figure F.4, is used in the majority of actual expatsrshown in this
thesis. An extended Kalman filter based localization system uses enaxks-elocity measure-
ments to predict the system pose based on dead-reckoning, and uppaapese estimate based
estimates of range and bearing to known landmarks [22]. The updatelsteysas a pose change
estimate based on an inertial measurement unit. The positions of the landelatike ito the robot
are estimated by a custom set of four stereo camera pairs. The stereagangemounted at 90 de-
grees from one another, which provides a near 360 degree fieldvaf Ve robot sensing package
also includes the Global Positioning System (GPS) antenna shown in Figyr@ S signals are
not used for indoor localization.

This localization approach provides reasonably accurate pose estiroatde fexperiments.
During execution, the pose estimate does experience jumps of seveialaters as new landmarks
are detected and old ones disappear from view. These jumps are disesla the control system.
The system does not have ground truth comparisons, so the effests/esnqualitatively judged by
the long runs shown in the experiments of Chapter 6. The overall penficeria consistent across
multiple loops around the hallways.

The robot mechanical system is a standard differential-drive systentwatdrive wheels and
two smaller rear caster wheels. Figure F.5 shows the system with the bowodivex polygon used
for estimatingR (Z;). The system is approximately 1.23 meters by 0.79 meters with approximately
1 meter of extension behind the drive wheels. The area swept by thiedting turns is significant;
the collision tests developed in this thesis allow policies to be deployed thatgeaisafety.

The robot is driven by two 24 volt motors attached to the large pneumatic tirgee ifront.
These tires provide maotive force to the system. Two rear caster wheeldg@siability, but also act
as a significant disturbance as discussed later in this section. The 408%rewolution encoders,
which are used to provide velocity estimates, are attached directly to thevdneel axles. This

Figure F.4: The LAGR robot uses four stereo cameras to perform viiead localization while
navigating. Three color-coded landmarks, which are used by the visgeddocalization system,
are visible in the image.

210 (© 2007 David C. Conner

0.4f

=

0.2

0.1

meters
o

o

-0.8 -0.6 -0.4 -0.2 0 0.2
meters

Figure F.5: The ‘LAGR’ robot with bounding polygon shown. The bogdpolygon is used to
guarantee the safety of a policy without being overly conservative.

provides significantly less velocity resolution than if the encoders werehatiato the motor and
had the advantage of the added gear ratio. Velocity estimates are noisyeasjmeds.

The velocity estimates are based on the difference between encodés ciwided by the
elapsed time between encoder count samples. To smooth the estimates, tlaiaadcuse an
adaptive windowing technique. The velocity calculations are made at 10Bddzver, if the sys-
tem is moving slowly the encoder count difference may be taken with repantencoder sample
taken up to 0.05 seconds previously. The window size is based on the nahdepsed encoder
counts; at least 50 counts uses a 0.01 second window, at least 38 aeas a 0.02 second window,
at least 20 counts/0.03 seconds, and 10 counts/0.04 seconds, to a ma{ithQfhsecond window.
This windowing technique smoothes the data somewhat, but introduces stayevidk respect to
the true velocity.

The motor control hardware is customized. The standard LAGR motor dientiolimited in
resolution to 7-bits and a maximum update rate of approximately 62 Hz. Thistabtlity proved
insufficient for two reasons. First, the noisy velocity signals limited the cbgains that could be
applied. Second, the caster wheel drag acts as a significant disterbarmoeg turns. These factors
resulted in significant overshoot when turning, and prevented thé fimmo operating according to
the kinematic assumption used in the policy design. To improve the controlnsspthe original
motor control amplifier was replaced with a microprocessor and two H-badggsifiers. This allow
the control signal resolution to be increased to 10-bits, and the updat® fa¢eincreased to 100
Hz.

With the customized motor controller, the motor velocities are governed via a \ehfdD
control loop for each wheel. The PID loop runs at 100 Hz, and spedfieWM duty-cycle to
the H-bridges connected to each motor. The velocity control used a RiDagh with additional
feed-forward terms. Due to the relatively noisy velocity signals, a gaiediding approach was
used based on the desired wheel velocities.

While this customized control has better response than the standard LA®®I¢@rdware, the
LAGR robot still did not provide accurate velocity tracking. Figure F.6vehthe wheel velocities
and body velocities for the first 10 seconds of the experiment shown und-&15-d. The velocity

(© 2007 David C. Conner 211

0.25}

0.27

0.15}

0.1

velocity (m/s)

0.05}

velocity (radian/s)

-0.05¢
0 2 4 6 8 10 0 2 4 6 8 10
time (seconds) time (seconds)
Forward Velocity Turning Rate

velocity (m/s)
velocity (m/s)

0 2 4 6 8 10 0 2 4 6 8 10

time (seconds) time (seconds)
Left Wheel Right Wheel

Figure F.6: The velocity response for the first 10 seconds of an aatuaf our hybrid control policy
as shown in Figure 6.15-d. The smoother light colored lines represecdthmanded velocity, the
noisier darker lines show the velocity estimates based on encoder f&edbac

tracking errors can be traced to noisy velocity estimates, limited PID contired,gand significant

disturbances during turns due to the caster wheels and wide pneumatieMiniésthe robot is a ro-

bust mechanical platform for its intended purpose of outdoor navigatiauih terrain, the system
is not well suited for precision high-speed navigation in confined enmigaris. Although the sys-
tem violates the assumptions of our kinematic control policies, the mostly stidoggseriments

of Chapter 6 show the robustness of the hybrid control approacttathain this thesis.

The control approach is the same as for the Deminer robot. The hybricbtpalicies use the
kinematic unicycle model with forward velocity and turning rate as inputs, agl ¢hlculates the
desired individual wheel speeds that are passed to the PID contpasl.[dbe hybrid control polices
chose from one of twelve bounded input sets and one ‘Halt’ policy. Ei§uf shows the collection
of input setsl4; used for the simulations; for the experiments the forward velocities areefurth
reduced by 50 percent due to the control difficulties highlighted abdve . Straight’ input sets are
used for PF policies based on straight line segments; these input sate thdwaggressiveness of
steering to avoid oscillations caused by the caster wheel drag duringssgg turns. The ‘“Turn’
input sets allow more aggressive turns and reduce forward speedatidivs the system to encode
“slow down while turning” for policies that do aggressive turns.

212 (© 2007 David C. Conner

—O— Aggressive

g —sle— Cautious

% —— Reverse Aggressive
5 —a— Reverse Cautious
© —a— Straight

3 —— Straight Cautious

—©— Reverse Straight
—H— Reverse Straight Cautiol:

=—%— Turn
—fe— Slow Turn
—p— Reverse Turn
—&— Reverse Slow Turn
-0.4 -0.2 0 0.2 0.4 0.6
v meters/s

Figure F.7: Twelve sets of bounded steering inputs

The robot computing is divided between four separate computers dednéga hardwired net-
work connections. The low-level control is governed by a processing on one computer. This
controller process handles velocity estimate calculations, accepts velatityanads, and calculates
the voltage duty cycle using the local PID loops. The duty cycle is communitatée micropro-
cessor via a serial link; the microprocessor governs the pulse width ntiodutd the H-bridges.
Two computers are responsible for running the four vision processedor each stereo pair, that
detect landmarks and estimate range and bearing. The bearing, ramggarnce estimates, and
associated landmark ID are passed to the localization process running fmuith computer. The
localization process uses velocity updates from the controller processdipthe robot motion.
The landmark information from the vision processes maps to a known locatiahes landmark
ID; this information along with data from the IMU is used in a correction step @ihlman filter
based pose estimation. The estimated pose is passed to the robot sofearé/exprocess run-
ning on the same computer. Upon receipt of a new pose estimate, the sak@artive determines
the appropriate local policy, calculates a new control input command, assgp the desired wheel
velocity to the control process.

The robot software executive process, which is coded in C++, rith&nwthe standard LAGR
process manager. The executive coordinates reading the configuiibas) initializing the robot
pose, and coordinating policy switching. The same executive is useaflordoder-based execu-
tion using D*-lite and automata-based execution using a synthesized autorib®automata are
synthesized before execution, and read in from a configuration file.

The simulations of the LAGR robot shown in Chapter 6 are run with the sanueixe code.
Instead of using the vision based localization and PID control, the veloctymands are passed
to a function that does numerical integration to provide localization. Thdifumsimulates delays
between the desired velocity calculation and the actual velocity, and simuidtgs dbetween the
actual pose and the estimate passed to the executive functions. This simallties1the actual
robot code to be tested prior to execution on the robot, and also allows simslafiethe policies
with ideal kinematics. The simulations assume a 50 Hz control update, with aicahigtegration
of configuration velocities at a 0.001 second time step. A delay betweerotoatculation and
velocity response of 0.02 seconds was modeled.

(© 2007 David C. Conner 213

F.3 Ackermann Steered Car-like Robot

The parking and traffic simulations in Chapter 6 use a model of an Ackerstaered car. This is
one of the more complex kinematic models for single bodied nonholonomic sysiénsssection
provides an overview of the specific model used.

The vehicle simulations take place in an environment shown in Figure 6.2 #o@tderay lanes
and parking spaces in these two urban blocks are sized using “graeticpt standards$, which
result in narrower roadways than standard highways. The parkapspard.86 x 2.44 meters.
The roadway lanes afe49 meters from centerline to curb, leaving just undg)5 meters for the
driving lane. To make the parking problem more challenging, the roba¢rsys modeled on a
“mini-van”, which is a relatively large vehicle as shown in Figure F.8. The @zapproximately
5.1 meters by 1.85 meters.

The system model is that of a kinematic Ackermann-steered car as delSaorifggpendix A.4.3.
This rear-wheel drive model assumes the reference point is attaclieel ¢enter of the rear axle.
The mappingA (¢) : U — T,G is given by

Rcosf 0
A(q) = | Rsing 0f , (F.1)
%tarub 0

where R = 0.406 meters is the drive wheel radius afnd= 3.00 meters is the wheelbase. The
inputs areu = [1/; ¢>]T where1) is the rear drive wheel speed andhe rate of change of the
steering angle. Note the dependencelqf;) on the steering angle.

The steering angle is limited, which limits the turning rate of the vehicle. The vehicientu
circle, defined as the circle traced by the wheel farthest from the cefrtieming, is approximately
11.2 meters in diameter. This translates to a steering angle limit of 0.66 radians oegjre®d. The

http://www.nahbre.org/greenguidelines/usergusite innovative.html

1.5 F

0.5

meters
[l

-15 ¢

0 ! 2 3 s
meters
Figure F.8: The body plan of the Ackermann steered mini-van. The inpaitb@drive speed of the

rear wheels and the rate of steering angle change. The robot bodyriddsbby a polygon, which
is used in the estimates &f(=;). The extension of the tires beyond the robot body is ignored.

214 (© 2007 David C. Conner

steering angle is further limited at higher speeds to enforce a safety fhat@ncodes “slow down
while turning.” Figure F.9 shows four different bounded sets that sse@ated with four different
input sets.

The system uses four different input sets for the local control poliaeshown in Figure F.10.
During execution, the hybrid control policies chose a drive speedtaedisg rate that is applied to
the system. To enforce the steering limits shown in Figure F.9, the input sethsrfeonstrained
during execution. The steering angle bounds are converted to rate limitsthsifiormulag; =
‘biA‘t‘b, whereg; is a vertex of the new rate bounds; is a vertex on the steering angle bounds
from Figure F.9, and\t¢ is the nominal control update rate. The resulting vertices are converted to

0.5¢
n
c
S
3 —©— Aggressive
s 9 —afe— Cautious
—4— Reverse Aggressivie
-8 Reverse Cautious
-0.5¢
-1 L L L L)
=20 -10 0 10 20 30

¢ radians/s

Figure F.9: The steering angle is limited as a function of forward velocitydfatyg.

4 -
2 L
2]
C
8
2 —O— Aggressive
< 97 —e— Cautious
—#— Reverse Aggressive
-——&— Reverse Cautious
_2 L
_4 L L L L J
=20 -10 0 10 20 30

¢ radians/s

Figure F.10: The steering rate as a function of forward speed.

(© 2007 David C. Conner 215

half-space constraints and added to the input constraints for the coptiolization. These added
velocity constraints guarantee that steering angle limit is not exceeded) doeimext time step.

The Chapter 6 simulations are executed using code written in M&tlabhe simulations as-
sume the pose is fully known, and the control is exact without delay. The giondassume a 100
Hz control update, with a numerical integration of configuration velocities@D01 second time
step.

216 (© 2007 David C. Conner

217

Bibliography

[1] A. M. Bloch et al. Nonholonomic Mechanics and Contr8pringer, 2003.

[2] Fabio Ancona and Alberto Bressan. Patchy Vector Fields and Asyiopfbabilization.
ESAIM: Control, Optimization, and Calculus of Variatiomages 445-471, 1999.

[3] Kwok Wai Au and Yangsheng Xu. Path Following of a Single Wheel &olm IEEE Confer-
ence on Robotics and Automatjgrages 2925-2930, San Francisco, CA, USA, April 2000.

[4] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino. Path Trackingn@ol for Dubin’s
Car. InlEEE International Conference on Robotics and Automatiages 3123-3128, Min-
neapolis, MN, 1996.

[5] J. Barraquand and J.C. Latombe. Nonholonomic Multibody RobotstrGltability and Mo-
tion Planning in the Presence of Obstaclksigiorithmica 10:121-155, 1993.

[6] Richard BellmanDynamic ProgrammingPrinceton University Press, 1957.

[7] Calin Belta, Volkan Iser, and George J. Pappas. Discrete Abstractar Robot Planning
and Control in Polygonal Environmentd&EE Transactions on Robotic21(5):864—-874,
October 2005.

[8] William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry
. Academic Press, 1986.

[9] Johann Borenstein and Y. Koren. The Vector Field Histogram - Gastacle Avoidance for
Mobile RobotslEEE Transactions on Robotics and Automatid(8):278—288, June 1991.

[10] Stephen Boyd and Lieven Vandenberg@envex OptimizationrCambridge University Press,
March 2004.

[11] Michael S. Branicky. Stability of Switched Hybrid SystemsProceedings of the 33rd Con-
ference on Decision and Contyglages 3498-3503, 1994.

[12] Michael S. BranickyStudies in Hybrid Systems: Modeling, Analysis, and ConthD the-
sis, MIT, Dept. of Elec. Eng. And Computer Sci., June 1995.

[13] Michael S. Branicky. Multiple Lyapunov Functions and Other AnayFools for Switched
and Hybrid System3EEE Transactions on Automatic Contydi3(4):475-482, April 1998.

[14] Michael S. Branicky. Behavioral Programming. Working Notes AAAI Spring Symp. on
Hybrid Systems and AStanford, CA, March 1999.

[15] Michael S. Branicky and Gang Zhang. Solving Hybrid Controlldfemns: Level Sets and Be-
havioral Programming. IiProc. American Control Conferencpages 1175-1180, Chicago,
IL, June 2000.

[16] Karl Brauer. All Lined Up. http://www.edmunds.com/ownership/techedarticles/43858/article.html,

November 2007.

[17] O.Brock and L. E. Kavraki. Decomposition-Based Motion Plannivgramework for Real-
Time Motion Planning in High-Dimensional Configuration PlacesPhoceedings of The
2001 IEEE International Conference on Robotics and Automation (I0fa4es 1469-1475.
IEEE Press, May 2001.

[18] R. W. Brockett. Asymptotic Stability and Feedback Stabilization. In RageBrockett,
Richard S. Millman, and Hector J. Sussmann, edidiferential Geometric Control Theoyy
pages 181-191. Birkhauser Boston, 1983.

[19] Rodney A. Brooks. A Robust Layered Control System for a MoRobot.IEEE Transac-
tions on Robotics and Automatio?t14—-23, 1986.

[20] Randall E. Bryant. Graph-Based Algorithms for Boolean Functioanulation.|EEE
Transactions on Computerd5(8):677 — 691, August 1986.

[21] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential Cosifion of Dynamically
Dexterous Robot Behaviorénternational Journal of Robotics Reseaych8(6):534-555,
1999.

[22] Howie Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Buyak. E. Kavraki, and
S. Thrun Principles of Robot Motion: Theory, Algorithms, and Implementatiéfig Press,
2005.

[23] Edmund. M. Clarke and O. Grumberg D.A. Pel&tbdel CheckingMIT Press, Cambridge,
Massachusetts, 1999.

[24] David C. Conner, Hadas Kress-Gazit, Howie Choset, Alfred AzRend George J. Pappas.
Valet Parking Without a Valet. 112007 IEEE/RSJ International Conference on Intelligent
Robots and System®ctober 2007.

[25] David C. Conner, Alfred A. Rizzi, and Howie Choset. Composition ot&l Potential Func-
tions for Global Robot Control and Navigation.IBEE/RSJ Int'l. Conf. on Intelligent Robots
and Systemgages 3546 — 3551, Las Vegas, NV, October 2003.

[26] David C. Conner, Alfred A. Rizzi, and Howie Choset. Constructiowl Z&Automated De-
ployment of Local Potential Functions for Global Robot Control anditytion. Techni-
cal Report CMU-RI-TR-03-22, Carnegie Mellon University, Robofiastitute, Pittsburgh,
Pennsylvania, USA, 2003.

[27] C. 1. Connolly and R. A. Grupen. Nonholonomic Path Planning Usiaghbnic Functions.
Technical Report 94-50, UMass Computer Science, 1994.

[28] DARPA. Urban Grand Challenge, 2007. [Online; accessed dghber-2007].

[29] C. Canudas de Wit and R. Roskam. Path Following of a 2-DOF Whédlsulle Robot
under Path and Input Torque ConstraintslHEE International Conference on Robotics and
Automation pages 1142 — 1146, April 1991.

218 (© 2007 David C. Conner

[30] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartsorsdeetives and Results on the
Stability and Stabilizability of Hybrid System®roceedings of the IEEE, Special Issue on
Hybrid Systems88(7):1069-1082, July 2000.

[31] R. DeCarlo, S.H. Zak, and G.P. Matthews. Variable Structure Cbatronlinear Multi-
variable Systems: A TutoriaRroceedings of the IEEE6(3), March 1988.

[32] F. Diaz del Rio, G. Jimenez, J. L. Sevillano, S. Vicente, and A. @ailcells. A General-
ization of Path Following for Mobile Robotgournal of Robotic System$8(7):325 — 342,
2001.

[33] A.Deluca, G. Oriolo, and C. SamsdRobot Motion Planning and Controthapter Feedback
Control of a Nonholonomic Car-Like Robot, pages 171-254. Sprikgdeag, 1998.

[34] E. Allen Emerson. Temporal and Modal Logic.Handbook of theoretical computer science
(vol. B): formal models and semantjggages 995-1072. MIT Press, Cambridge, MA, USA,
1990.

[35] Lawrence C. EvandRartial Differential EquationsAmerican Mathematical Society, Provi-
dence, RI, 1998.

[36] George Fainekos, Hadas Kress-Gazit, and George J. Pdpplasd Controllers for Path
Planning: A Temporal Logic Approach. IlEEE Conference on Decision and Control
Seville, Spain, 2005.

[37] George Fainekos, Hadas Kress-Gazit, and George J. Papgmporal Logic Planning for
Mobile Robots. INEEE Conference on Robotics and AutomatiBarcelona, Spain, 2005.

[38] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamieddiv Approach to
Collision AvoidancelEEE Robotics and Automation Magazjiéarch 1997.

[39] Th. Fraichard. Motion Planning for Autonomous Car-Like VehiclExim News (42):26-28,
July 2000.

[40] Th. Fraichard and H. Asama. Inevitable Collision States: A Step Tasv8afer Robots? In
Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and SysteassVegas, NV (US),
October 2003.

[41] E. Frazzoli, M.A. Dahleh, and E. Feron. Maneuver-Based MoRtanning for Nonlinear
Systems with SymmetriedEEE Transactions on Robotic21(6):1077-1091, December
2005.

[42] C. E. Garcia, D. M. Prett, and M. Morari. Model Predictive Cohtitheory and Practice —
A survey.Automatica 25(3):335-348, 1989.

[43] Geoffrey Gordon. Stable Function Approximation in Dynamic ProgramgmimProceedings
of IMCL '95, 1995.

[44] Luc C. G. J. M. Habets, Pieter J. Collins, and Jan H. van Schupesachability and Control
Synthesis for Piecewise-affine Hybrid Systems on Simpli&dsE Trans. Automatic Contrpl
51(6):938-948, June 2006.

(© 2007 David C. Conner 219

[45] Luc C. G. J. M. Habets and Jan H. van Schuppen. Control oeRiise-Linear Hybrid Sys-
tems on Simplices and RectanglElybrid Systems: Computation and Control, Lecture Notes
in Computer Scienc034:261-274, 2001.

[46] Luc C. G. J. M. Habets and Jan H. van Schuppen. A Controllenokor Affine Dynamical
Systems on a Full-dimensional Polytopeitomatica 40(1):21-35, January 2004.

[47] Sven HedlundComputational Methods for Optimal Control of Hybrid SysteRisD thesis,
Lund Institute of Technology, May 2003.

[48] Thomas A. Henzinger. The Theory of Hybrid AutomataPimceedings of the 11th Annual
Symposium on Logic in Computer Science (LI@&pes 278—-292. IEEE Computer Society
Press, 1996.

[49] Jonathan W. Hurst, Joel Chestnutt, and Alfred A. Rizzi. DesignRimitbsophy of the Bi-
MASC, a Highly Dynamic Biped. IHEEE Conference on Robotics and Automatiépril
2007.

[50] T. lkeda, M. Fukaya, and T. Mita. Position and Attitude Control ofUmderwater Vehicle
Using Variable Constraint Control. Proceedings of the 40th IEEE Conference on Decision
and Contro) volume 4, pages 3758 —3763, 2001.

[51] Alevs Jaklic, Aless Leonardis, and Franc Solin&egmentation and Recovery of Su-
perquadrics volume 20 ofComputational Imaging and VisiorKluwer, Dordrecth, 2000.
ISBN 0-7923-6601-8.

[52] Rune M. Jensen, Randy E. Bryant, and Manuela M. Veloso. S&tA*Efficient BDD-Based
Heuristic Search Algorithm. IRroceedings of AAAI-200Edmonton, Canada, August 2002.

[53] P.Jinrenez, F. Thomas, and C. Torr&obot Motion Planning and Contrathapter Collision
Detection Algorithms for Motion Planning, pages 255-304. Springer-yefla98.

[54] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K.Kég and H. Hirukawa.
Biped Walking Pattern Generation by Using Preview Control of Zero-Mdremt. INIEEE
Conference on Robotics and Automatipages 1620— 1626, September 2003.

[55] George Kantor and Alfred A. Rizzi. Feedback Control of Undarated Systems via Se-
quential Composition: Visually Guided Control of a Unicycle Rroceedings of 11th Inter-
national Symposium of Robotics Reseafohtober 2003.

[56] George A. Kantor and Alfred A. Rizzi. Sequential Composition fontal of Underactu-
ated Systems. Technical Report TR-03-23, Robotics Institute, Carieglien University,
Pittsburgh, PA, December 2003.

[57] L. H. Keel and S. P. Bhattacharyya. Robust, Fragile, or Optim&@EE Transactions on
Automatic Contrgl42(8):1098-1105, August 1997.

[58] J. M. Keil. Decomposing a Polygon into Simpler ComponeSi&M J. Comput.14:799—
817, 1985.

[59] Scott D. Kelly. The Mechanics and Control of Robotic Locomotion with Applications to
Aquatic VehiclesPhD thesis, California Institute of Technology, 1998.

220 (© 2007 David C. Conner

[60] Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators al®RobotsInter-
national Journal of Robotics Researd{1):90-98, 1986.

[61] M. Kloetzer and C. Belta. A Fully Automated Framework for Control afid¢ar Systems
from LTL Specifications. Ir@th International Workshop on Hybrid Systems: Computation
and Contro] Santa Barbara, California, 2006.

[62] M. Kloetzer and C. Belta. Managing Non-determinism in Symbolic Robotidf Planning
and Control. INEEE International Conference on Robotics and Automation (ICRAne,
Italy, 2007.

[63] Daniel E. Koditschek. Some Applications of Natural Motion ContAdbME Journal of Dy-
namic Systems, Measurement, and ConfrtB(4):552-557, December 1991.

[64] Daniel E. Koditschek. The Control of Natural Motion in Mechani8gstemsASME Journal
of Dynamic Systems, Measurement, and ContrbB(4):548-551, December 1991.

[65] llya Kolmanovsky and N. Harris McClamroch. Developments in Nonhaoic Control
ProblemsIEEE Control System45:20-36, December 1995.

[66] A. N. Kolmogorov and S. V. Fomirintroduction to Real Analysidover Publications, Inc.,
1975.

[67] Hadas Kress-Gazit. personal communication, 2007.

[68] Hadas Kress-Gazit, Georgios E. Fainekos, and George JaPapfhere’s Waldo? Sensor-
Based Temporal Logic Motion Planning. IBEE International Conference on Robotics and
Automation Rome, Italy, 2007.

[69] B. H. Krogh. A Generalized Potential Field Approach to Obstacledaace Control. IIEME
Conf. Proc. Robotics Research: The Next Five Years and Beatdlehem, Pennsylvania,
August 1984.

[70] J.C. LatombeRobot Motion PlanningKluwer Academic Publishers, Boston, MA, 1991.

[71] J. P. LaumondNonholonomic Motion Planning for Mobile RoboSentre National de la
Recherche Scientifique, Laboratoire d’Analyse et d’ArchitectureSyssemes, 1998.

[72] J. P. Laumond, editoRobot Motion Planning and ControEpringer-Verlag, 1998.

[73] J. P. Laumond, S. Sekhavat, and F. Lamirde@bot Motion Planning and Controthapter
Guidelines in Nonholonomic Motion Planning for Mobile Robots, pages 1-pdn&er-
Verlag, 1998.

[74] Tom Lauwers, George A Kantor, and Ralph Hollis. A Dynamically St&ilgle-Wheeled
Mobile Robot with Inverse Mouse-Ball Drive. Proceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA @@)ges 2884 — 2889, May 2006.

[75] S. M. LaValle.Planning AlgorithmsCambridge University Press, Cambridge, U.K., 2006.
Available at http://planning.cs.uiuc.edu/.

[76] Steven M. LaValle. From Dynamic Programming to RRTs: Algorithmic DesifjReasible
Trajectories. In A. Bicchi, H. I. Christensen, and D. Prattichizzo, eslj@ontrol Problems
in Robotics pages 19-37. Springer-Verlag, Berlin, 2002.

(© 2007 David C. Conner 221

[77] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamitnitig. InIEEE In-
ternational Conference on Robotics and Automatiaiume 1, pages 473-479, 1999.

[78] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamimitig. International
Journal of Robotics Research0(5):378—-400, May 2001.

[79] Daniel Liberzon and A. Stephen Morse. Basic Problems in StabilityDesign of Switched
SystemslEEE Control Systempages 59-70, October 1999.

[80] Maxim Likhachev, David Ferguson, Geoffrey Gordon, Anth¢hgny) Stentz, and Sebastian
Thrun. Anytime Dynamic A*. An Anytime, Replanning Algorithm. IRroceedings of the
International Conference on Automated Planning and Scheduling (IGABSe 2005.

[81] Maxim Likhachev and Sven Koenig. Speeding Up the Parti-Game Afarith Advances in
Neural Information Processing Systems BT Press, 2003.

[82] Stephen. R. Lindemann, Islam I. Hussein, and Steven M. LaVadlaltite Feedback Con-
trol for Nonholonomic Mobile Robots with Obstacles.|IEEE Conference on Decision and
Control, San Diego, CA, 2006.

[83] Stephen. R. Lindemann and Steven M. LaValle. Smoothly Blending ¥&@tds for Global
Robot Navigation. IlEEE Conference on Decision and Conir8kville, Spain, 2005.

[84] Stephen. R. Lindemann and Steven M. LaValle. Smooth Feedbadkdotike Vehicles
in Polygonal Environments. IEEEE International Conference on Robotics and Automation
(ICRA), Rome, Italy, 2007.

[85] Gabriel A.D. Lopes and Daniel E. Koditschek. Level Sets and I8t&fanifold Approxi-
mations for Perceptually Driven Nonholonomically Constrained NavigationEEE/RSJ
International Conference on Intelligent Robots and Syst&ardai, Japan, September 2004.

[86] T. Lozano-Pe&ez, Matthew T. Mason, and R. H. Taylor. Automatic Synthesis of Fine-motion
Strategies for Robot$nternational Journal of Robotics Resear@{l1):3-23, 1984.

[87] Matthew T. MasonMechanics of Robotic Manipulatiofhe MIT Press, 2001.

[88] G. Ayorkor Mills-Tettey, Anthony (Tony) Stentz, and M BernardDias. DD* Lite: Efficient
Incremental Search with State DominanceTiventy-First National Conference on Artificial
Intelligence (AAAI-06)pages 1032-1038, July 2006.

[89] Brian Mirtich and John Canny. Using Skeletons for Nonholonomic Pddimning Among
Obstacles. IrProceedings of IEEE International Conference on Robotics and Audioma
pages 2533-2540, May 1992.

[90] Jorge Coies Monforte.Geometric, Control and Numerical Aspects of Nonholonomic Sys-
tems Springer, 2002.

[91] Monte Carlo and Quasi-Monte Carlo Methods, November 2007.

[92] Rémi Munos. A Study of Reinforcement Learning in the Continuous Caseéylgans of
Viscosity SolutionsMachine Learning Journak0:265-299, 2000.

[93] Remi Munos and Andrew Moore. Variable Resolution Discretization jptir@al Control.
Machine Learning49, Numbers 2/3:291-323, November/December 2002.

222 (© 2007 David C. Conner

[94] Richard M. Murray, Zexiang Li, and S. Shankar SaskyMathematical Introduction to
Robotic ManipulationCRC Press, 1994.

[95] W. L. Nelson. Continuous Curvature Paths for Autonomous VehitheEE International
Conference on Robotics and Automativolume 3, pages 1260-1264, Scottsdale, AZ, 1989.

[96] J.P. Ostrowski and J.W. Burdick. The Geometric Mechanics of oty Robotic Locomo-
tion. International Journal of Robotics Reseaydv(7):683—702, 1998.

[97] Sarangi Patel, Sang-Hack Jung, James P. Ostrowski, RahuaR&Gamillo J. Taylor. Sensor
Based Door Navigation for a Nonholonomic Vehicle.lEEE International Conference on
Robotics and Automatigpages 3081-3086, Washington,DC, May 2002.

[98] Kaustubh Pathak and Sunil K. Agrawal. An Integrated Path-Plgnaimd Control Ap-
proach for Nonholonomic Unicycles Using Switched Local Potenti@lEE Transactions
on Robotics21(6):1201-1208, December 2005.

[99] Per-Olof Persson and Gilbert Strang. A Simple Mesh Generator illMB. SIAM Review
46(2):329-345, June 2004. Available online at http://www-math.mit.edu/ gefregsh/.

[100] M. Peternell, H. Pottmann, and T. Steiner. Minkowski Sum Boun8arfaces of 3D-objects.
Technical report, Vienna Univ. of Technology, Geometry PreprimieSéNo 140, 2005.

[101] Martin Peternell and Friedrich Manhart. The Convolution of a Baliid and a Parametrized
SurfaceJournal for Geometry and Graphics fages 157-171, 2003.

[102] A. Pnueli and E. Shahar. The TLV System and its Applications6199

[103] Arthur Quaid and Alfred A. Rizzi. Robust and Efficient Motion Piarg for a Planar Robot
Using Hybrid Control. INEEE International Conference on Robotics and Automatiath-
ume 4, pages 4021 — 4026, April 2000.

[104] Elon Rimon and Daniel E. Kodischek. Exact Robot Navigation Ugntificial Potential
FunctionslEEE Transactions on Robotics and Automati8(b):501-518, October 1992.

[105] Alfred A. Rizzi. Hybrid Control as a Method for Robot Motion Pragiming. INIEEE In-
ternational Conference on Robotics and Automatiaiume 1, pages 832 — 837, May 1998.

[106] Robert C. McOwenPartial Differential Equations: Methods and Applicatiorearson Ed-
ucation, Prentice Hall, 2nd edition, 2003.

[107] Bartek Roszak and Mireille E. Broucke. Necessary and Suffi€ienditions for Reachability
on a SimplexAutomatica42(11):1913-1918, November 2006.

[108] StuartJ. Russell and Peter Norvgtificial Intelligence: A Modern ApproacltiPrentice Hall,
1995.

[109] Maria Lucia Sampoli. Computing the Convolution and the Minkowski Sdirf8uwfaces. In
SCCG '05: Proceedings of the 21st spring conference on Compudghgs pages 111—
117, New York, NY, USA, 2005. ACM Press.

[110] Nilanjan Sarkar, Xiaoping Yun, and Vijay Kumar. Control of Menlwal Systems with
Rolling Constraints: Applications to Dynamic Control of Mobile Robdtke International
Journal of Robotics Research3(1):55-69, February 1994.

(© 2007 David C. Conner 223

[111] S. Sekhavat and M. Chyba. Nonholonomic Deformation of a Potétidilal for Motion Plan-
ning. In Proceedings of IEEE International Conference on Robotics and Autom@ages
817-822, May 1999.

[112] Elie ShammasGeneralized Motion Planning for Underactuated Mechanical Systé&nb
thesis, Carnegie Mellon University, 2006.

[113] Reid Simmons. The Curvature-Velocity Method for Local Obstacleidance. INEEE In-
ternational Conference on Robotics and Automatispril 1996.

[114] Anthony (Tony) Stentz. The Focussed D* Algorithm for Real-TinepRnning. InProceed-
ings of the International Joint Conference on Artificial Intelligendegust 1995.

[115] P. Svestka and M. H. Overmafobot Motion Planning and Controthapter Probabilistic
Path Planning, pages 255-304. Springer-Verlag, 1998.

[116] A. Tayebi and A. Rachid. A Unified Discontinuous State Feedl@zmktroller for the Path-
Following and the Point-Stabilization Problems of a Unicycle-like Mobile RobotEBRE
International Conference on Robotics and Automatmages 31-35, October 1997.

[117] John A. ThorpeElementary Topics in Differential Geomet§pringer, 1978.

[118] Sebastian Thrun, Wolfram Burgard, and Dieter FBxobabilistic Robotics MIT Press,
Boston, MA, September 2005.

[119] D.E. Koditschek U. Saranli, M. Buehler. RHex: A Simple and Highly e Hexapod
Robot.The International Journal of Robotics Resear2d(7):616—631, July 2001.

[120] M. Vendittelli, J.P. Laumond, and C. Nissoux. Obstacle Distance &wtlike RobotsIEEE
Transactions on Robotics and Automati@b(4):678—691, 1999.

[121] Douglas B. Westlntroduction to Graph Theory, 2nd e@rentice-Hall, Englewood Cliffs,
NJ, 2000.

[122] Wikipedia. Markov Decision Process — Wikipedia, The Free Elnpedia, 2007. [Online;
accessed 13-November-2007].

[123] Libo Yang and Steven M. Lavalle. The Sampling-Based Neightmtidégraph: An Approach
to Computing and Executing Feedback Motion StratedieEE Transactions on Robotics
and Automation20(3):419-432, June 2004.

224 (© 2007 David C. Conner

