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Abstract. This paper documents the development, validation, and refinement of
analytic deposition models for automotive spray painting, based largely on experi-
mental work conducted in conjunction with the Ford Motor Company. This work,
part of a larger ongoing collaborative effort with the Ford Motor Company, has the
goal of developing practical and efficient trajectory planning tools for automotive
painting. Our efforts thus far have led to the development of analytic deposition
models for the widely used electrostatic rotating bell (ESRB) atomizers. Unlike ear-
lier trajectory planning tools, which rely on conventional deposition models that
do not capture the complexity of deposition patterns generated by ESRB atomiz-
ers, the models presented in this paper take into account both the surface curvature
and the deposition pattern of ESRB atomizers. These deposition models enable our
planning tools to evaluate trajectories with respect to several measures of quality,
such as coating uniformity.

1 Introduction

The application of automotive paint is predominately performed by indus-
trial robots. Unlike the largely robotic task of applying paint, the task of
generating trajectories for the robots is largely a human endeavor. The spec-
ification of these trajectories by experienced technicians cannot be finished
until the body design is finalized, thereby representing a major bottleneck in
the concept-to-customer time line. Our research focuses on developing tools
to automate the generation of these trajectories based on CAD models of the
vehicle surface; thereby decreasing the amount of time required to generate
the trajectories. In this paper, we describe the experimental process used to
validate and refine the deposition models developed during the first phase of
our research. Using these results, we will find methods to automate the task
of planning trajectories given the complicated deposition patterns generated
by electrostatic rotating bell atomizers (ESRB).

2 Prior Work

Automotive coating processes are moving increasingly towards the use of
ESRB atomizers, shown schematically in Figure 1, in order to increase trans-
fer efficiencies [1-3]. In an ESRB atomizer, paint fluid is forced onto the inner
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surface of a high speed rotating bell [1,2]. The bell is maintained at a high
voltage of 40-90 kV relative to the grounded surface being painted. Nega-
tive polarities are typically used for painting applications [4]. The paint flow
breaks up at the edge of the bell, forming a cloud of droplets, as it is ex-
pelled radially due to centrifugal force imparted to the paint by the rotating
bell. During this process, the electrostatically charged bell imparts a charge
to each paint droplet. Both high velocity shaping air and a charged pattern
control ring are used to force the charged droplets towards the grounded
surface.
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Researchers developing models of the deposition of paint by ESRB atom-
izers have generally focused on electrostatic effects, such as the interaction
between the electric fields and the charged paint droplets, and not on the
effects of various surface shapes. Early work in modeling the electrical effects
of these ESRB systems was performed by Elmoursi [2], and later expanded
by Ellwood and Braslaw to include coupling between the droplet flow and
the electrical field [1].

The complexity of ESRB atomizer deposition patterns does not allow the
use of previously developed trajectory planners. These planners have gener-
ally assumed simple deposition patterns or required the user to specify infor-
mation about the deposition pattern [5-9]. Other trajectory planning research
assumes the use of aerosol atomizers, which generate deposition patterns that
are not compatible with the patterns generated by ESRB atomizers [10,11].
Arikan and Balkan developed a paint deposition simulation where the paint
deposition model used a beta distribution [10]. Hertling et al. proposed more
realistic deposition models for use in their trajectory planning system, but
specifically limited their work to aerosol sprays citing the inherent complexity
of electrostatic deposition patterns [11].

3 Deposition Modeling

The deposition models we developed represent a compromise between two
fundamentally opposed evaluation criteria. First, the model must capture the
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structure of the deposition to accurately predict the deposition onto a variety
of surface shapes. However, the model must be computationally efficient, since
it is also needed by the planner. The models we have developed attempt to
balance the need for accuracy with the need for simplicity.

For the ESRB atomizers studied in this paper, the overall shape of the
deposition pattern is roughly circular when the bell is oriented normal to a
flat panel and the atomizer is stationary; we refer to this as the 2D deposition
pattern. As the bell moves relative to the surface, the 2D deposition pattern
moves over the surface and paint is accumulated on the surface. The resulting
paint thickness profile, which we refer to as the 1D collapse, is equivalent
to that obtained by integrating the deposition model along the direction of
travel. Figure 2 shows the relationship between the 2D deposition pattern
and the resulting 1D collapse generated by the motion of the atomizer.
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the integrated thick-
ness profile (1D col-
lapse).
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Since parameterizing the deposition model for arbitrary surfaces is diffi-
cult at best, and since experimental data for planar surfaces is readily avail-
able, we developed an analytic model for the 2D deposition pattern on a
planar surface orthogonal to the orientation of the atomizer. The planar de-
position is then mapped onto an arbitrary surface in a way that preserves
the total paint volume. The planar surface, located at a constant distance
from the atomizer, is referred to as the deposition model plane. The planar
deposition model, d : R? — IR, uses two Gaussians—one offset 1D Gaussian
revolved around the origin and one 2D centered Gaussian—and a scaling
function that generates an asymmetry in the model. The resulting planar
deposition model, similar to the asymmetric volcano shown in Figure 2, is
given by

d(z,y) = K1 (1 - Ka2) f(z,y) g1(2,y) + K2 g2(2,9) ) , (1)

where K> € [0, 1] weights the revolved Gaussian against the centered Gaus-
sian. To account for asymmetry in the deposition pattern, the revolved offset
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Gaussian, ¢; : R? — TR, is scaled by the function f: IR? — IR. We define f
to be

f(z,y) = (14 Ks sin(atan2(y, z) — ¢)) ,

where K3 € [0,1] weights the asymmetry scaling function for the revolved
Gaussian. The phase angle, ¢, allows the asymmetry to be localized relative
to the atomizer reference frame. K; € Rt scales the distribution to give the
paint deposition flux in units of thickness per second.

Looking at the individual components of (1), the revolved offset Gaussian,
g1, is defined to be
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where r is the offset radius, o7 is the standard deviation of the Gaussian, and
~ normalizes the deposition such that integral of g; over z and y equals one.
The centered Gaussian, g; : IR? — IR, also normalized, is given by
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where o5 is the standard deviation of the centered Gaussian.

The analytic planar deposition model, together with the mapping to ar-
bitrary surfaces, is referred to as the 2D deposition model, or simply the
deposition model. The 2D deposition model, denoted D(s, p), is of the form
D : {R® x 8%} x SE(3) — IR. The deposition model assigns the rate of
paint deposition or deposition flux at a given point and surface normal, de-
noted s € {IR3 X SQ}, on an arbitrary surface, given p € SE (3), the location
and orientation of the bell atomizer. A differential element on the deposition
model plane gives a paint solids volume of V' = d(q) dr dy, where d(q) is the
deposition flux at point q = (z,y) on the deposition model plane. As this
differential element is projected onto the surface about point s, as shown in
Figure 3, the total volume must remain unchanged in order to preserve mass
(assuming constant solids density). From differential geometry, it follows that
D(s,p) is given by

D(s.p) = 1z tdla). e

The reader is referred to [12] for a detailed derivation of this result.

It is also desired to have a model to predict the integrated paint deposi-
tion as the atomizer moves across a surface. Unfortunately, the complexity
of the analytic 2D deposition model renders the calculation of an analytic
integral intractable. Instead, we directly define the 1D collapse model using
three separate Gaussians. Two Gaussians are offset from the centerline to
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Fig. 3. (1) 2D representation of the projection of the planar deposition onto an
arbitrary surface. (r) Flat panel being covered with three passes.

allow asymmetries in the deposition pattern to be modeled, while the third
Gaussian is centered. The complete 1D collapse model is given by

r—r 2
c(z) = 3\/15 ( i K1 €xp (— %) +

2
é Ko €xp (— —2—(5”'25:22) ) + (3)
2
% K3 exp (— %g) > ,

where r; represents the offset radii, o; represents the standard deviations,
and k; represents the gains specifying the paint thickness for each Gaussian.
Figure 2 shows the composite film build for a parameterization of (3).

Using the 1D collapse model, it is straightforward to determine the thick-
ness variation as the result of multiple passes as shown in Figure 3. The
reader is referred to [12] for further details on the calculation of the paint
thickness variance.

4 Experimental Validation

The 2D deposition and 1D collapse models were validated by conducting a
series of tests in an industrial paint shop. The experiments used an ABB
S3 robot with an ABB 50 mm Micro-Micro Bell atomizer attached to ap-
ply a solvent based automotive paint to phosphate coated test panels. The
operating conditions of the application process were 80-90 kV electrostatic
voltage, 150 cc/min paint flow, 250 1/min shaping air flow, and a bell speed
of 30000 RPM. The total film thickness of the oven cured test panels was
measured with an Elcometer 355 coating thickness measuring device. Five
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measurements were taken for each data point, with the low and high dis-
carded and the average of the remaining three recorded. The average phos-
phate thickness was then subtracted from the total film thickness to give the
paint thickness.

4.1 Deposition Model Parameterization

In order to determine the values for the 1D collapse and 2D deposition model
parameters, experimental data was gathered from flat panels painted by three
passes as shown in Figure 3. We chose to fit our model to a 577 mm index
test, and used numeric optimization to determine the best parameter values
for the 1D collapse,which were then used to initialize the 2D model.

Given initial parameter values for the 2D deposition model, we calculated
the 1D collapse thickness values from the 2D model using numeric integration.
The 1D collapse values were then compared to the experimental data, with
numeric optimization used to find the 2D deposition model parameter values
that minimized the sum squared error between the experimental data and the
numerically integrated 1D collapse. The parameterized models, both 2D and
1D collapse, were shown previously in Figure 2. Figure 4 shows the resulting
profile (1D collapse) obtained from a simulation using the 2D deposition
model against the experimental data to which it was fit. The simulation
results were obtained through numeric evaluation of our deposition models,
and give a good match to the experimental data.
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4.2 Planar Deposition Results

Using the 2D deposition model parameterized by the 577 mm index three pass
test, the depositions generated by 525 and 625 mm index tests were simulated
and compared to the experimental data. The results are shown in Figure 5.
The model gives a good prediction of both average film build and the struc-
ture of the variation for these flat panel tests. Most importantly, the model
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Fig. 5. Flat panel test results: (1) 525 mm index test, and (r) 625 mm index test.
Both (1) and (r) used the model parameterized by the data from the 577 mm index
test. Both simulations capture the variation due to the structure of the deposition
pattern. (average error: | = —0.69 and r = —1.05 microns, standard deviations:
1 = 2.41 and r = 1.68 microns)

captured both the asymmetries and the structural variation dependence on
index distance.

4.3 Surface Deposition Results

Given the relatively good results of the flat panel tests, the projection of
the planar deposition model onto arbitrary surfaces was tested. A represen-
tative automotive surface was obtained by using a Ford F-150 truck door.
Figure 6 shows a CAD model of the truck door used, with an example path
shown. The door has a line of convex curvature near the middle, with a pro-
nounced concave curvature on the bottom third of the door. A series of tests
were conducted using both horizontal and vertical passes over the door. For
the horizontal passes, film build measurements were taken in four vertical
columns of data spread across the door, numbered top to bottom. For the
vertical passes, the measurements were taken from six rows spread vertically
over the door spaning left to right across the door. For the first horizontal
test, results for a typical column are shown in Figure 6, which also shows the
simulated deposition for each pass individually.

Near the top of the door, in the relatively flat portion, the simulation
gives somewhat reasonable results. However, the simulation fails to accurately
predict paint thickness in the highly curved section near the bottom of the
door. Clearly the pass along the lower portion of the door deposits more paint
than the simulation predicts. It is theorized that when the surface curves
away from the bell, electrostatic effects dominate invalidating the geometric
projection model described in Section 3. Similar tests were conducted for
vertical painting motions, with comparable results.
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Fig. 6. (1) Door with horizontal paint path shown. The robot paints left to right
starting at the left of pass #1, then travels right to left along pass #2, finishing
by going left to right along pass #3. (r) Simulation of a horizontal painting motion
over the door, with deposition by individual passes shown.

4.4 Miscellaneous Results

It was also desired to verify that our deposition models scale with applicator
speed. To this end, two additional tests were conducted. These tests used a
single pass, with the robot painting horizontally, at tip speeds of 100 mm/sec
and 250 mm/sec. It was intended to compare these results to the 50 mm/sec
3-pass results. The 250 mm/sec test resulted in significant spattering at the
nominal paint flow rates being used. Since the sensor was not designed to
measure discrete drops of paint, the results were deemed inadmissible. The
result for the 100 mm/sec test is shown in Figure 7. As shown, the simulation
predicted much greater paint deposition than actually measured. It has been
theorized that the transfer efficiencies increase when painting wet surfaces,
because some paint initially bounces off of the dry surfaces. Slower tip speeds
allow more wet paint film to build up, thereby increasing the average transfer
efficiency.
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Fig. 7. Single Horizontal pass with V=100
mm/sec. Simulation predicts higher paint
deposition than data shows for this higher
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Also notice that the data set in Figure 7 exhibits an asymmetry, while
the simulation does not. During this test, the orientation of the atomizer was
consistent with the previous 577 3-pass test, while the direction of travel was
orthogonal to the 577 mm index test used in the model parameterization.
The deposition model developed in Section 3 has a hemispheric asymmetry.
This test implies the need for a more localized asymmetry term in the 2D
model. Since the 1D collapse model is dependent on the direction of travel
anyway, no change to the 1D collapse model is needed. With the addition
of this more localized asymmetry component, the model error would need
to be calculated against both horizontal and vertical motions during the
parameter optimization. The reader is referred to [12] for the development of
this modification.

5 Conclusions

The experimental study confirms both the structure of our planar deposition
model and the dependence of the thickness variation on that structure. The
models we developed accurately predict deposition on planar surfaces, where
the atomizer is oriented normal to the surface. Additionally, our analytic 1D
collapse model effectively predicts the dependence of the thickness variation
on the index distance between passes. Although the experimental results
from deposition on the curved surface of the door point to shortcomings with
the simple geometric projection developed in Section 3, the experiments do
confirm the interaction of the surface curvature with the planar deposition
pattern. These preliminary results also indicate the need for additional tests
regarding the dependence on the deposition pattern and transfer efficiency
on the speed of the atomizer as it moves relative to the surface.

Despite the shortcomings of our 2D deposition model, the models are use-
ful for our research. By using an analytic model, we are able to develop our
understanding of the interaction between the surface, the deposition pattern,
and the atomizer path. This enables our exploration of path planning tech-
niques that influence overall quality measures such as thickness variation,
cycle time, and efficiency. Since the main focus of our research is on path
planning, we will continue to use these analytic models during the develop-
ment phase of our planning tools. Since our planning tools rely only on the
structure of the deposition on the surface, and not on the underlying model,
the need for more expensive models or experimental data is delayed until the
implementation stage.
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