Contact sensor-based Coverage of Rectilinear Environments

Zack J. Butler
The Robotics Institute, Carnegie Mellon University

zackb@ri.cmu.edu

Abstract

A wvariety of mobile robotics tasks require complete
coverage of an initially unknown environment, either
as the entire task or as a way to generate a complete
map for use in further missions. This is a problem
known as sensor-based coverage, in which the robot’s
sensing is used to plan a path that reaches every point
in the environment. Sensor-based coverage algorithms
have been developed previously for robots with remote
sensing, however, it is possible to cover certain en-
vironments using only contact sensing. This paper
presents a geometrically complete algorithm CCg that
performs sensor-based coverage in rectilinear worlds
using only contact sensing. The outline of a complete-
ness proof of CCr is also presented, which shows that
it produces coverage of any of a large class of rectilin-
ear environments. Implementation of CCg in simula-
tion is discussed, as well as the results of testing in a
variety of world geometries. Finally, potential exten-
stons of the algorithm are discussed, including its use
by robots working in a team.

1 Introduction

For robotic missions as diverse as mine detection
and floor cleaning, the overall task can be specified as
a complete exploration, or coverage, of the environ-
ment. In general, coverage can be defined as bringing
a sensor or effector to every point in an environment,
and the coverage problem as the generation of a path
leading to coverage such as the one shown in Fig. la.
Coverage can also be used by any mobile robot to gen-
erate a complete map of the environment for future
tasks. For known planar environments, the coverage
problem has been solved, motivated by tasks such as
pocket cutting by milling machines[1]. For tasks where
the environment cannot be known ahead of time, the
sensor or effector needs some computation along with
it to simultaneously determine the geometry of the en-
vironment and a coverage path within it. This ma-
chine then becomes a robot performing sensor-based
coverage. While the implementation of sensor-based
coverage is dependent on the particular class of envi-
ronment and robot, algorithms have been written that
apply to a wide range of systems. However, no single
general algorithm has yet been proposed.

In a rather unusual application of sensor-based cov-
erage, the minifactory, a modular automated assem-
bly system under development in the Microdynamic

\

Xg A

TN
(b)

N

()

Figure 1: Planned and sensor-based coverage: (a) a
planned coverage path of the environment; (b) a pos-
sible path taken by a robot performing sensor-based
coverage which started at zy and has just encountered
an obstacle at x.

Systems Laboratory, will use a version of sensor-based
coverage for calibration. In a minifactory, a small ex-
ample of which is shown in Fig. 2, small robots based
on planar linear motors (called couriers) travel over
table-like platen surfaces and are used to transfer prod-
ucts through the factory and participate in the assem-
bly of these products by cooperating with overhead
robots. One of the major goals of the minifactory is to
greatly reduce design and setup time through the use
of independent modular robots, a common program-
ming language, and a high-fidelity simulation environ-
ment [2]. To this end, the factory is designed and the
robots in it programmed in simulation, and once the
actual factory is created, the simulation is automati-
cally updated to match the as-built factory. The indi-
vidual robot programs are then modified so that the
robots move correctly and can coordinate with suffi-
cient precision. To perform this update process, each
courier will run a sensor-based coverage algorithm,
using contact sensing to determine the layout of the
platens. As it covers its workspace, it will also use
an upward-pointing optical sensor to locate LED bea-
cons placed on overhead robots. Using sensor-based
coverage for this process will ensure the detection and
precise localization of all overhead robots in the fac-
tory as well as the verification of the overall shape and
topology of the factory.

In general, most sensor-based coverage algorithms
start with a basic scheme for covering a simple type

Overhead
manipulator

Precision

parts feeder
S Bulk random

parts feeder

Figure 2: A section of a small minifactory with very
simple topology.

of geometry (such as convex or simply connected re-
gions). Coverage then begins by assuming the environ-
ment to have this geometry, proceeding until a feature
that contradicts the assumption is discovered. At this
point the algorithm continues coverage on one side of
the feature and remembers the location of the other
side as a place to continue coverage from in the fu-
ture, as shown by the dashed line in Fig. 1b. For
example, the method developed by Hert et al [3] puts
these line segments in a stack, recursively adding them
(when discovering obstacles such as in Fig. 1b) and re-
moving them (when selecting such a segment to cover
from) as it progresses. This algorithm allows the robot
to completely cover a planar area without building an
explicit map. The method of Choset et al [4, 5] in-
stead builds a cell-based map of the environment that
is sparse but contains sufficient information for nav-
igation through the environment as well as direction
of coverage. In contrast to these, the algorithm pro-
posed by Pirzadeh [6] does not use a specific coverage
strategy but simply builds a grid-based map of the en-
vironment and moves toward unexplored cells until all
cells (each the size of the robot) have been visited or
shown to be unreachable.

The cell-based algorithms have provided the basis
of the algorithm presented here. In these algorithms,
the environment is divided into a set of disjoint cells
as shown in Fig. 3, each of which can be easily cov-
ered. For planned coverage, the known environment
is divided up into cells by passing a vertical 1-D slice
through it. Each z location where the number of con-
nected components of the slice changes is called a crit-
ical point, and the area between critical points defines
a cell. Each cell then has a continuous floor and ceil-
ing and can be covered with a series of vertical strips
from one side to the other. To implement sensor-based
coverage within this framework, it is assumed initially
that the environment consists of a single cell and cov-
erage of the cell is begun by traveling in vertical strips.
When the robot discovers a discontinuity in the floor or
ceiling of the cell, a new cell is instantiated on the other
side of the discontinuity. Each cell is then covered the
same way, with more cells created as necessary, until

\

Floor (1)

S8 :
7 !
s

7

Critical point

§xi

Figure 3: Cell decomposition (due to the method in
[4]) of an environment with polygonal obstacles.

the boundary of all cells is known and all cells have
been covered, at which point coverage is complete.

2 Problem specifics

To implement sensor-based coverage for couriers, an
algorithm will be required that uses contact sensing.
So, as a first step toward creating a comprehensive al-
gorithm, and motivated by the geometry of the mini-
factory, the problem approached here is to create an al-
gorithm that can cover rectilinear environments using
only contact sensing. This is in contrast to previous
sensor-based coverage algorithms, which have applied
to robots that use range sensors such as sonar to de-
termine the locations of obstacles in the environment.
Range sensors are quite common in mobile robotics,
and coverage algorithms for robots that use them have
been shown to be complete for large classes of planar
environments. However, for some (and perhaps all)
planar environments, remote sensors are not necessary
for sensor based coverage. Contact sensors are inex-
pensive, quite robust with respect to false positives and
negatives, and can still provide sufficient information
for coverage. In the minifactory, couriers use tmplicit
contact sensing to discover the boundaries of their en-
vironment — when they attempt to move but cannot,
they assume the presence of an impeding obstacle.

Using contact sensing to perform coverage compli-
cates the algorithm, since the sensor’s extent is by def-
inition the same size as the robot’s extent, and the
robot must therefore be treated as having a finite size
within its workspace.! One complication this intro-
duces is that when the robot has a finite size within a
cell decomposition, it is no longer always completely
within a single cell, leading to a number of special
cases in the implementation of an algorithm. Also,
robots with implicit contact sensing require two colli-
sions with a corner (once on each edge) before its lo-
cation can be determined. The algorithm must there-
fore allow this location to be uncertain after the initial
collision and direct the robot to the second collision,
capabilities not required if range sensors are used.

On the other hand, covering a rectilinear environ-
ment rather than a more general polygonal one simpli-

! Alternately, the coverage can be performed in the robot’s
configuration space, resulting in a single-point sensor with un-
usual properties and similar challenges to the algorithm.

Figure 4: Cell C; and its data structures; cell C; has
been added for clarity.

fies the problem somewhat. For example, cells of a rec-
tilinear environment (when swept parallel to one axis)
are themselves simply rectangles, since their floors
and ceilings are defined by walls perpendicular to the
sweep, and can therefore be represented with simple
data structures. However, when creating the current
algorithm, care was taken to avoid precluding its ex-
tension to more general environments. Also, the recti-
linear environment invalidates some standard assump-
tions of the cell decomposition methods for polygonal
environments. Specifically, the “general position” as-
sumption for these methods is that a single obstacle
vertex defines each critical point, and that no two crit-
ical points occur at the same x value. In a rectilinear
environment, the critical points will be due to walls of
finite length parallel to the direction of the coverage
strips. In addition, we do not preclude having two or
more of these walls at the same 2 location, although
the current algorithm was written for environments in
which all cells are at least as wide as the robot.

3 Description of CCg

Inspired by the cell decomposition algorithms de-
scribed above and taking into account the issues pre-
sented in Sec. 2, a new sensor-based coverage algo-
rithm has been developed. Using this algorithm (de-
noted C'Cg for contact-based coverage of rectilinear
environments), a square robot with implicit contact
sensing (and essentially perfect position sensing) can
cover environments with rectilinear boundary and ob-
stacles. It is a completely reactive algorithm based
on incremental construction of a cell decomposition of
the environment. The robot’s exploration is directed
only by the state of the cell decomposition C', which is
continuously updated as coverage progresses, and the
robot’s current position p — no time-based history is
maintained. The exploration continues until there is
no part of C' left unknown, at which point the environ-
ment has been completely covered. The completeness
property of C'Cr for most environments is proven in
detail in [7], and the proof is outlined below in Sec. 4.

The cell decomposition C' consists of an unordered
list of cells Cy...C, and an unordered list of place-
holders Hy ... H,,. The data structures that comprise
a cell are shown in Fig. 4. The area of a cell Cj is rep-

C

@]

| >~n+1y n+lp
/4
HE
G A
| |
| |
seed-sowing path || | y
|- | floor of
| G, .C;
cell boundary locatiorea——m} nox

Figure 5: While seed-sowing in Cj, the robot travels
outside of C;_, so a new cell (Cp41) must be added to
C and the boundary between them localized.

resented by a pair of rectangles: C;_ is its minimum
known extent and C;, its maximum possible extent.
Its known side edges each consist of a set of intervals,
each of which corresponds to another cell or an en-
tire wall segment. The interval representation allows
for multiple cells to adjoin one side of a single cell,
and also serves to indicate when an edge has been ex-
plored - namely, when the intervals span the line from
the floor to the ceiling. A placeholder is simply a line
segment that lies adjacent to the side edge of a cell
and serves as a geometric pointer to an area that has
not yet been explored.

CCFR executes based on events, where an event is
defined as any occasion when the robot has collided
with a wall or the current trajectory has completed.
When an event occurs, the event handler (half of CCg)
makes changes to C' based on the new event. The
map interpreter then uses C' and p to determine the
robot’s current cell C; and then examines C; (and p) to
determine a new direction of travel and the maximum
distance that can be traveled in that direction before
a change of direction would be necessary. Thus, if
this new trajectory completes without collision, CCg
will run at the right time to replan the coverage path.
The trajectory is then executed by the robot without
interference from C'Cg until another event takes place.

The choice of travel direction at any point is de-
termined by an ordered list of rules. In general, the
desired behavior is that of “seed-sowing”, namely that
the robot should travel in parallel strips of alternating
direction slightly closer together than the width of the
robot. Seed-sowing is known to be an efficient cover-
age method in terms of overall path length. In CCg,
for seed-sowing, the robot is directed to a point just
outside the edge of the covered portion of the cell and
touching the floor or ceiling of the cell, then moved in
the y direction until it reaches the opposite edge of the
cell. Repeating these two steps results in a seed-sowing
path. As the robot performs seed-sowing, however, it
will eventually come across unexpected obstacles or
corners in the boundary and the seed-sowing will be
interrupted. Therefore, other rules must exist to con-
tinue coverage correctly in these special cases.

For example, consider the case shown in Fig. 5.
The robot was performing seed-sowing in cell C; when

Cin' |C|x
Ci I Ci
| % S
2% | @4
| Hm+1 IHm+1
— |
(@) ()

Figure 6: (a) After unexpected contact at location 1,
the robot must move around the corner and (b) localize
the edge of C; at location 4 before continuing.

it reached the end of a trajectory and found itself out-
side C;_. At this point, Cp41 is instantiated by the
event handler with minimum and maximum left edges
as shown in Fig. 5. The map interpreter then no-
tices the uncertainty of this left edge (note that Cp4q
is now the current cell) and directs the robot to move
sideways to determine its location. The other common
special case is illustrated in Fig. 6, in which the robot
has come in contact with an obstacle wall. For this
case, the event handler first sets the maximum right
edge of C; to be at the right edge of the robot and
instantiates a new placeholder Hy,41. The map inter-
preter then notices that the right edge of C; has finite
uncertainty, similar to the left edge of Cj,41 in the
previous example. Rather than moving toward this
uncertainty, however, it must direct the robot com-
pletely within C;_ (to location 2 in Fig. 6a), then up
to location 3, where there must be a wall to its right,
before moving back to the right to localize the new
edge. The robot then completes the seed-sowing strip
that was interrupted by the collision while simultane-
ously exploring the remainder of this new edge.

In addition to these cases, another situation can
arise in which seed-sowing should not be continued
in the current cell. When a cell is first entered, the
side from which it has been entered should be fully
explored before seed-sowing continues away from that
edge. This will avoid forcing the robot to return to
the edge to explore it once it has reached the other
side of the cell. It also puts the cell in a well-defined
state (i.e. with one completely known edge) after being
created, making it easier to prove that it will always
be completed correctly, as shown below.

The rules for all the different cases are tested in
order by the map interpreter, with the first applicable
rule determining the next trajectory. For this reason,
the special cases are tested first, followed by the rule
that generates seed-sowing. These rules are as follows,
where C, is the cell containing p:

1. If C; has a side edge with finite uncertainty, move
inside C; and next to a wall, then toward the edge

2. If a side edge of C, is not completely explored,
move adjacent to the unknown point of the edge
closest to p and try to make contact

. If C; has an unknown ceiling, travel in +z

. If C. has an unknown floor, travel in —z

. Otherwise, if C, is not completely covered, per-
form seed-sowing (as described above)

O O

It should be noted that rules 1 and 2 are actually
tested twice, once for the right side edge and again
for the left, and that seed-sowing may occur either to
the left or right of the previously covered portion of C..
Additionally, depending on the location of the robot,
various cases within each rule may be triggered to de-
termine travel direction. For example, rule 1 tests to
determine if the robot is completely within C., and
if so, whether it is adjacent to a wall, to select the
appropriate trajectory.

Finally, it may be the case that the current cell has
been completely covered and all its edges have been
explored. This cell is then said to be complete. In this
case, the map interpreter must direct the robot to an
uncovered area (either an incomplete cell or a place-
holder). For reasons explained in the proof below, if
there is an incomplete cell in C, it is dealt with be-
fore any placeholders. If there is not one, the choice of
which placeholder to go to next is arbitrary as far as
the completeness of the algorithm is concerned. How-
ever, for greater efficiency, the map interpreter first
looks for placeholders adjacent to the current cell and
chooses the nearest of those. If there are none of these,
the lowest numbered placeholder is chosen (arbitrarily)
as a destination. Then, for all of these cases, a path is
planned to the cell or placeholder by creating a graph
from the adjacency relationships of the cells and using
depth-first search within that graph. To complete the
list of rules:

6. If an incomplete cell exists, plan a path to it and
travel to the first cell along that path.

7. If C. has a placeholder H; adjacent to it, instan-
tiate a cell just beyond Hy with width equal to
that of the robot and plan a (straight line) path
to the interval corresponding to the new cell.

8. Plan a path to the lowest numbered placeholder
and travel to the first cell along that path.

4 Proof/Results

Because the task of sensor-based coverage is to
reach every point in an environment, it is important to
show analytically that an algorithm will achieve this
for all potential environments. Therefore, to show the
completeness of C'Cg, a proof has been written that
verifies that for a certain large class of rectilinear en-
vironments and for all initial positions of the robot
within the environment E, C'Cgr will direct the robot
to every point in . Environments for which this proof
are valid are all those in which the canonical cell de-
composition contains only cells wider than the width
of the robot. Completeness is shown as follows:

1. From any initial position, at most two cells are
created, both well-opened 2

2A cell is well-opened when the location of its floor and ceiling
are known and one side edge is completely explored.

o g 1 o g

v

B
n

Figure 7: The four types of initial conditions, in which
the shaded area is that covered by the first strip of
seed-sowing.

ii. Any well-opened cell will be completed (including
complete coverage) when visited

i1i. Every cell completion results in at most one well-
opened cell and any number of placeholders

iv. Any placeholder can be turned into a well-opened
cell

v. Every incomplete cell will be visited and every
placeholder removed

Each of these items is shown in detail in [7], using
the rules of C'Cgr over the potential range of environ-
ment geometries to determine all possible behaviors. A
summary of the arguments for each item is presented
here. For the initial conditions, there are four dis-
tinct cases, as shown in Fig. 7. Note that in all but
Case I, the height of this strip (which will start cell
Cho) does not correspond to the cell the robot’s center
is in, and in Case IV, it does not correspond to any
cell in the final decomposrtlon Case I is the general
case, in which seed-sowing will continue to the right,
and although the cell is not strictly well-opened, it
will behave as if it is. Case II also continues to the
right, leaving Cy larger on its left than it should be.
This will also work correctly provided this extra area
is explored from within before it is approached from
above or below, which is assured by rule 6. In case
II, a new cell is instantiated during the second strip,
leaving Cy arbitrarily thin. However, the new cell Cy
will be immediately turned into a well-opened cell, and
Cy can be re-entered and coverage resumed regardless
of its width. Finally, case IV begins as case III, but
upon return to a thin Cy, yet another cell is created
during the first seed-sowing strip. This process results
in Cp having zero width, but this does not affect the
correctness of C' or the ability to plan paths within it.

To prove property ii, it is first shown that rule 2 of
CC’R successfully explores any partially known edge
It is then shown that in the absence of overlapping in-
complete cells, seed-sowing continues in a well-opened
cell until the final unknown edge is discovered, either
as shown in Fig. 5 or Fig. 6 or during a horizontal
motion of seed-sowing. To determine the location of
this edge, the two former cases are always handled as
described in Sec. 3, and the latter case is even simpler:
when the edge is discovered, its position is immediately
known. Then, in all cases, the new edge is partially
known and is immediately explored, completing the

@ EDDD (b)

(©)

Figure 9: Some of the worlds in which C'Cr was tested:
(a) “P” world (b) “Skull” world (c) “Large” world.
The black square in each is the size of the robot.

knowledge of the cell edges. This also finishes cover-
age of the cell, thereby completing the cell. This ex-
ploration is then shown to result only in the creation of
placeholders (no incomplete cells), and so these com-
pletions will indeed result in at most one incomplete
cell (created only in the case shown in Fig. 5), proving
property iii. This property is then used to show that
there will never be more than two incomplete cells in
C, and that these two will never overlap. This last
fact means that the restriction placed on the proof of
property i1 above is in fact not restrictive at all.

Once the ability to complete any well-opened cell is
shown as well as the ability to turn any initial condi-
tion into well-opened cells, it is proven that any place-
holder can also be turned into a well-opened cell. This
is simply done by showing that for the small cell in-
stantiated from a placeholder by rule 7, the robot will
enter it and immediately explore the near side edge
including discovering the floor and ceiling, making a
well-opened cell. Finally, the assurance that all place-
holders and cells will be visited (and therefore all area
will be covered) is given by rule 8, which will look for
and be able to plan a path to any cell or placeholder
in ', and so CCg does not terminate until coverage is
complete.

In addition to the proof, to verify and test the
performance of CCg, a simulation was programmed
within the minifactory simulation environment. This
environment allowed for a variety of test environments
to be implemented as well as easy 3-D visualization
of robot motion under CCg. In addition to CCg it-
self, for this work, software was written that displayed
a representation of the robot’s cell decomposition as
coverage progressed. A screen shot of this software in
operation is shown in Fig. 8.

Once encoded, C'Cr was run in a variety of envi-
ronments such as the ones shown in Fig. 9. Each
run began at a random position (including all types
of initial conditions) and one of four orientations and
the robot proceeded to cover the environment. After
several iterations of debugging C'Cr and its implemen-
tation, the final version was able to successfully cover
each of 5 worlds over 25 times without a single failure.

courier/

hetpi/ fwvww.es.emu edu/~ms]

Rot Roty (I _mm] Dol |

placeholder

complete /

strip

cell

incomplete cell
—Mmin. max.
width covered

Figure 8: A screen shot of the simulation of CCg. The left window is a rendering of the environment which is
being covered, and the right window is a graphical representation of the current cell decomposition (labels have
been added by hand; in the simulation, different colors are used for the different data structures).

5 Conclusions/Future work

Sensor-based coverage is a problem with a number
of applications in robotics. The algorithm presented
here, CCg, has been shown both analytically and em-
pirically to solve this problem for a previously uncon-
sidered type of robot system. Additionally, work is
underway to implement CCg on the actual minifac-
tory hardware, a task which is simplified by having
trajectory outputs from the algorithm.

CCR also has great potential to be extended. One
such extension is to a larger class of robots and envi-
ronments. Current research is underway on an algo-
rithm CCp which will have similar structure to CCgr
but apply to circular robots with a ring of one-bit con-
tact sensors operating in a planar environment with
polygonal obstacles. This type of system is more com-
parable to those handled by other coverage algorithms
and closer to common mobile robotics tasks than the
rectilinear world currently handled. In addition, CCp
will have similar data structures to CCpg that will al-
low it to handle a slightly wider class of environments
than other coverage algorithms.

Additionally, in order for CCp to be applied to a
wide range of mobile robots, it will need to be able to
handle robots with some dead reckoning error in their
position sensing. This could be as simple as putting
uncertainties on wall locations based on models of sen-
sor error. However, it might also be reasonable to
change the basic coverage scheme or the way in which
edges are localized depending on the particular types
of errors likely in the positioning.

Finally, research is beginning that will take CCg
and apply it to a team of robots. In this work, which
will eventually be applied to the minifactory to make
the calibration process more efficient, each robot per-
forms a slightly modified version of C'Cr while pass-
ing information back and forth about their common
environment. Additional functions will be added in
parallel with CCg to interactively change the robot’s

cell decomposition based on knowledge gained through
communication with other robots. This will have the
effect of reducing the amount of area covered by each
robot in the team without having to fundamentally
change C'CR, allowing the completeness of C'Cgr for
each individual robot to be retained.

Acknowledgements

This work was supported in part by NSF grant
DMI-9523156. The author was supported in part by
an NSF Graduate Research Fellowship. The author
would like to thank Jay Gowdy, who wrote the minifac-
tory simulation environment, and Al Rizzi and Howie
Choset for thoughtful discussions about CCpg and its
completeness proof.

References

[1] M. Held, On the Computational Geometry of Pocket Ma-
chining. Springer-Verlag, Berlin, 1991.

[2] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Agile assembly
architecture: An agent-based approach to modular preci-

sion assembly systems,” in Proc. of IEEE Int’l. Conf. on
Robotics and Automation, pp. 1511-1516, April 1997.

[3] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain covering
algorithm for an AUV,” Autonomous Robots, vol. 3, pp. 91—
119, 1996.

[4] H. Choset and P. Pignon, “Coverage path planning: The
boustrophedon decomposition,” in Intl. Conf. on Field and
Service Robotics, 1997.

[5] E. Acar and H. Choset, “Sensor based coverage of unknown
environments.” submitted to 1999 Intl. Conf. on Robotics
and Automation.

[6] A. Pirzadeh and W. Snyder, “A unified solution to coverage
and search in explored and unexplored terrains using indi-
rect control,” in Proc. of IEEE Int’l. Conf. on Robotics and
Automation, pp. 2113-2119, April 1990.

[7] Z. J. Butler, “CCgr: A complete algorithm for contact-
sensor based coverage of rectilinear environments,” Tech.
Rep. CMU-RI-TR-98-27, Robotics Institute, Carnegie Mel-
lon Univ., 1998.

