
Modeling Dynamics and Exploring Control of
a Single-Wheeled Dynamically Stable Mobile

Robot with Arms

Eric M. Schearer

CMU-RI-TR-06-37

August 31, 2006

Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Submitted in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

This paper focuses on simulations of a dynamically stable mobile robot (Ballbot)
with arms. The simulations are of Ballbot lifting its arms in various directions. A
PD arm controller works independently of an LQR-designed balancing/station keeping
controller. The PD controller drives the arms to follow desired trajectories. When
the arms are raised, Ballbot assumes a leaning equilibrium (the physical equilibrium)
as opposed to the standing equilibrium (body stands totally upright - a predefined
desired equilibrium) that the LQR drives toward. The conflict between these two
equilibria causes the robot to lose its balance when lifting heavy (10 kg) loads. A
unified arm and station keeping/balancing controller is also described. The unified
controller outperforms the independent controllers in some cases. Balancing only using
arms and driving body movement with arms are briefly explored.

I

Acknowledgments

Thanks to my advisor, Dr. Ralph Hollis for his vision in creating Ballbot and guiding
my work. Thanks to Dr. George Kantor for constant technical advice and brainstorming.
Thanks to Anish Mampetta for his companionship and ideas through all of our experimenting
with Ballbot. Anish was also the first to derive the Ballbot motion equations using the
current coordinates. Thanks to Dr. Matt Mason and Jonathan Hurst for reviewing my
work as part of my committee. Thanks to my family, friends, and classmates for every day
support. This research is supported in part by NSF grant IIS-030867. The United States
Air Force funds my tuition. Thanks to Col(ret.) Chuck Wolfe, my supervisor at the Air
Force Research Lab Munitions Directorate and to the Engineering Mechanics Department
at the U.S. Air Force Academy for making the Air Force support possible.

II

Contents

1 Introduction 1

2 Modeling and Simulation 3
2.1 Simulation in SimMechanics . 3

2.1.1 SimMechanics Block Diagram . 3
2.1.2 Friction Model . 5
2.1.3 Actuation Model . 9

2.2 2D Ballbot with Arms Model . 10

3 Independent Balancing and Arm Controllers 13

4 Unified Balancing and Arm Controller 15

5 Performance 16
5.1 Arm Controller Performance . 17
5.2 Balancing When Arms Move . 19
5.3 Compare Independent to Unified Control Approach 27
5.4 New Ideas . 39

6 Conclusions and Future Work 41

7 References 43

A SimMechanics Block Diagrams 44
A.1 Independent Controllers . 44
A.2 Unified Controller . 49

III

1 Introduction

Ballbot is a mobile robot with human-like height, width, and weight. It actively balances and
moves on a single wheel using closed loop feedback, making it dynamically stable. Dynamic
stability affords it advantages in maneuverability over statically stable robots and makes it
a good candidate for operating in human environments. Balancing on a ball allows Ballbot
to be omni-directional, allowing it to move in any direction without turning.

The current version of Ballbot has no arms and is described in detail in [4] and [5].
Ballbot’s structure is three aluminum channels held together by circular decks that rest on
top of a single ball as seen in Figure 1. Figure 1a shows Ballbot standing with its three
legs (used when not dynamically balancing) deployed. On the circular decks are a battery,
a computer, a battery charger, and an inertial measurement unit (IMU) for measuring the
tilt angle of the body as seen in Figure 1b. Figure 1c. shows Ballbot balancing.

Figure 1:

The drive mechanism in Figure 2 includes four motors that drive the rollers which drive
the ball. Encoders on the motors measure the position of the rollers and thus the position
of the ball. A feedback controller allows Ballbot to move and balance.

Future versions of Ballbot will include arms with two degrees of freedom and will look
something like Figure 3. Arms will give Ballbot the capability to manipulate objects. Thi-
bodeau et. al. [9] have shown that dynamically stable mobile robots with arms can apply
larger contact forces than similar statically stable mobile manipulators. Arms can also in-
crease the stability and mobility of Ballbot.

The objectives of this work are:

1

drive roller

drive belt

motor encoders

belt tensioner

servomotor

ball

ball transfers (3)

Figure 2:

Figure 3:

• Create a 3D mechanical simulation of Ballbot with arms to study the dynamics of the
armed configuration. Section 2 discusses this model.

• Design a simple arm controller to operate simultaneously with and independently of a
body station keeping/balancing controller. This is seen in Section 3.

• Design a unified station keeping/balancing and arm controller that uses feedback from
the arms, ball, and body to both balance and move the arms. Section 4 describes this
controller.

• Section 5 evaluates and compares the performances of these two controllers.

• Section 6 suggests future work.

2

2 Modeling and Simulation

This section describes a 3D Ballbot simulation in SimMechanics and a planar Ballbot model
used for deriving controllers.

2.1 Simulation in SimMechanics

A 3D simulation of Ballbot with arms was created using SimMechanics. SimMechanics
is a mechanical modeling package used with Simulink r©. SimMechanics uses the Newton-
Euler equations to describe the motion of rigid bodies and allows users to create models in
the Simulink r© block environment. Rigid bodies are modeled by a center of mass position
and body orientation relative to some coordinate system (a fixed coordinate system or a
coordinate system of a connected body), a mass, and an inertia tensor. The user can create
degrees of freedom by connecting bodies with joints and take away degrees of freedom with
constraints. Virtual sensors connected to bodies and joints allow the user to measure outputs
and feed them back to controllers which send signals to actuators that can apply forces,
torques, or prescribed motions to joints and bodies.

2.1.1 SimMechanics Block Diagram

Figure 4 shows a block diagram modeling the Ballbot with arms in SimMechanics. The
model consists of nine rigid bodies (the ground, the ball, the body, two arms, and four drive
rollers), the joints connecting them, the constraints limiting their motion, and two controllers
that sense movement and apply torques to the bodies. Orange blocks represent bodies, green
blocks represent joints, red blocks represent constraints, blue blocks represent controllers,
and the cyan block represents the fixed ground. The “Ball” is connected to “Ground1” by
a six degree of freedom joint. The 6-DoF joint is three perpendicular prismatic axes and
a quaternion representing rotation. The “Rolling Constraint” block constrains the relative
motion of the ball with respect to the ground. The rolling constraint equation is:

v
g
bx

v
g
by

v
g
bz

 =

rbω
g
by

rbω
g
bx

0

where vb and ωb are the linear and angular ball velocities, rb is the ball radius, the z axis is
vertical, and the x and y axes are parallel to the ground. These constraints prescribe that
the ball rolls on the ground without slipping and does not move in the vertical direction.
Superscripts indicate the coordinate system where g stands for ground. Subscripts refer to
bodies and vector components.

The “Body” which represents the Ballbot’s tower of motors, sensors, computers, etc. is
connected to the “Ball” by a spherical joint represented by a quaternion. Revolute joints,
defined by an axis and rotation angle, connect the four rollers (“y1 roller”, “x1 roller”, “y2
roller”, and “x2 roller”) to the “Body”. The red block, “Roller Constraints”, constrains the
relative motion of the rollers and ball. These constraint equations are:

3

CG

CS1
CS2

y2 roller

CG

CS1
CS2

y1 roller

CG

CS1
CS2

x2 roller

CG

CS1
CS2

x1 roller

CS1

hand2

CS1

hand1

CS1CS2

arm2

CS1CS2

arm1

BF

Weld1

BF

Weld

BF

Universal1

BF

Universal

B F

Spherical

B F

Six−DoF

Conn1

Conn2

Conn3

Rolling
Constraint

Conn1

Conn3

Conn5

Conn7

Conn9

Conn2

Conn4

Conn6

Conn8

Roller
Constraints

B F

Revolute3

B F

Revolute2

B
F

Revolute1

B
F

Revolute

Env

Machine
Environment Ground1

Sense Y

Sense X

Sense Body

Act Y1

Act X1

Act Y2

Act X2

Control
and Actuation

CS1

CS8

CS9

CS2

CS4

CS3

CS6

CS5

CS7

Body

CS6

CS4

CS5

CS1

CS2

CS7

CS10

CS9

CS8

Ball

Sense Arm1

Sense Arm2

Act Arm1

Act Arm2

Arm Controller

F
igu

re
4:

S
im

M
ech

an
ics

B
lo

ck
D

iagram

4

rx1rω
x1r
x1rz = rbω

g
by = rx2rω

x2r
x2rz

ry1rω
y1r
y1rz = rbω

g
bx = ry2rω

y2r
y2rz

where x1r, x2r, y1r, and y2r, refer to the rollers and b refers to the ball. The z axis of
each roller is its rotation axis. These constraints mean that the rollers roll without slipping
on the ball. The rollers can slip on the ball in the non-rolling directions. For example, in
Figure 2, if the ball is rolling on the roller labeled “drive roller”, it must be slipping on the
roller perpendicular to the “drive roller” (the other visible roller). The second roller still will
roll on the ball without slipping when it is rotating. Note that the ball angular velocity is
expressed in the ground frame when it should be expressed in the corresponding roller frame.
A major flaw of SimMechanics is that it only allows the user to express constraint equations
in either the body frame or the ground frame and not in the coordinate frame of another
body. Here we want to express the ball’s angular velocity in the roller frame. With these
limitations, if Ballbot yaws, the constraints are no longer correct (making the simulation
somewhat invalid) because the ground frame no longer lines up with the roller frames.

The arms, “arm1”, and “arm2” are connected to the “Body” by universal joints, which
allow two perpendicular degrees of rotational freedom. Based on the Ballbot’s height (about
1.5 m), Ballbot’s arms are 0.58 m long - proportional to a human. The arms are cylinders
with the density of aluminum. The hands “hand1” and “hand2” are spheres welded to the
ends of the arms.

The blue “Control and Actuation” block senses the orientation of the “Body” and posi-
tions of the rollers (and the arms in one controller) and applies torques to the rollers. The
“Arm Controller” block senses the position of the arms (and the body orientation and roller
positions in one controller) and applies torques to the arms. The appendix discusses these
two blocks in more detail. Section 3 describes the controllers in detail.

2.1.2 Friction Model

The friction model is found in the “Control and Actuation/Actuation and Friction” block of
Figure 4. No friction is modeled in the arms, and no friction is explicitly modeled between the
ball and ground and between the ball and body. The ball/ground, ball/body, and ball/roller
friction torques are lumped together and implemented by subtracting friction torques from
the torque applied to the rollers as follows:

τ = τr − τs − τv − τc (1)

where τ , τr, τs, τv, and τc, are the total torque applied to the roller, the torque that the
controller prescribes, the torque on the roller due to static friction, the torque on the roller
due to viscous friction, and the torque on the roller due to coulomb friction, respectively.
The friction torques are further defined below.

τs =

{

τr if τr ≤ τsm
0 if τr > τsm

(2)

where τsm is the maximum static friction torque.

5

τv = γvωrz (3)

where ωrz is the angular velocity of the roller about its rotation axis.

τc = γcsign(ωrz) (4)

To determine values for τsm, γv, and γc, a series of Ballbot tests were conducted. The tests
were conducted in the first floor hallway of Smith Hall on the black ribbed carpet. Ballbot
rolled on a hollow aluminum ball with urethane coating. No controller was used. For each
test, predetermined torque commands were given to the motors. Without a controller to
keep Ballbot standing, people held Ballbot vertical as it moved. The first test series used
a slow ramping (increment torque input by 0.0785 Nm or 5 DAC counts per second) of
the input torque. For much of each of these runs the torque was not enough to cause any
ball movement. Eventually enough torque was applied to move the ball. This first series
determined the static friction torque. The next set of tests used faster increases to the input
torque (1.57 Nm or 100 counts per second) to provide data to estimate the viscous and
coulomb friction torques. We ran tests in positive and negative x and y directions and in
the diagonal directions as well.

The maximum static friction torque for each test run is the value of τr when the ball
velocity becomes non-zero. By looking at the data (ball velocity vs. time plots), we can
determine the maximum static friction. For example, in Figure 5a the ball appears to move
shortly after 3 seconds. We know that the rollers applied 4.71 Nm to the ball at that time.
This torque is the maximum static friction for the particular test run. The ball velocity
threshold used was 0.1 rad/s. τv and τc were determined by assuming a quasi-steady state
for the region of the data where the velocity is non-zero, namely:

τr − τv − τc = 0 (5)

substituting equations (3 - 4) into equation (5) and rearranging terms:

γvωrz + γc = τr (6)

The process for finding γv and γc is outlined below:

• Fit a line to the ball velocity vs. time plot in the non-zero velocity region.

• Compute the value of the ball velocity at the end of the test run using the best fit line.

• Plug this final ball velocity (converted to roller velocity) into equation (6) for each test.

• Now we have a system of n (number of test runs for each direction) equations in two
unknowns, γv and γc. Solve these equations using singular value decomposition (SVD).

• An alternate solution method was using two ball velocity values from the best fit line
and solving a system of 2 equations and 2 unknowns for each test run. Then average the
γv and γc values for each test run over the set of similar (same ball velocity direction)
test runs.

6

Table 1 shows the values of each of the friction terms for a number of different directions
(e.g. +x-y is the direction 45 degrees from the positive x and 45 degrees from the negative y)
and for all directions. The fact that the values vary across the different directions suggests
that friction is not isotropic.

Direction τsm (AVG) γv (AVG) γc (AVG) γv (SVD) γc (SVD)
+x 4.91 2.05 5.45 2.11 5.42
-x 5.06 2.18 5.60 0.91 6.38
+y 4.3 1.56 5.30 0.61 6.72
-y 5.38 2.01 6.41 1.12 8.58
+x+y 4.35 0.96 5.82 0.96 5.82
+x-y 7.04 1.84 7.06 1.75 7.33
-x+y 4.35 0.61 6.08 0.58 6.46
-x-y 5.55 2.74 6.02 1.48 6.25
All 5.01 2.08 5.61 0.57 8.88

Table 1: Model Coefficients

Note that the data in Table 1 are for ball torques which were used for a previous simulator.
The current simulator uses roller torques so the appropriate conversion must be made. Also
note that the test data was taken when Ballbot had only two driven rollers (now all four are
driven). To account for more driven rollers, the current simulation uses the Table 1 values
divided by 2. This may be a poor assumption, and the tests should be run again to obtain
more accurate friction terms.

To check the goodness of the friction terms in Table 1, a 1D simulation of the ball motion
ignoring the effects of the body was created. The simulation solves the model equation
(7) using the new friction values in Table 1. The moment of inertia of the ball is Ib =
0.0463 kg m2, and the angular acceleration of the ball is θ̈b. Plots of the simulation output
with the corresponding plots of hallway test runs are displayed in Figure 5. In the legend
of Figure 5, “drive1” and “drive2” refer to the x and y ball positions taken from the motor
encoders, and “idle1” and “idle2” refer to the x and y ball positions taken from the passive
roller encoders. Note that the motor encoders and passive roller encoders have opposite
polarity, but are both meant to measure ball position.

Ibθ̈b = τr − τs − τv − τc (7)

Figure 6a shows ball velocity vs. time for the simulation using a model with no friction
and using one with only static friction. Figure 6b shows ball velocity vs. time for the
simulation using a model with all of the friction terms and one using static and viscous
friction. Notice the large disparity of velocity magnitudes between these two figures. This
disparity indicates that viscous friction is a major factor. Also notice in Figure 6b that
coulomb friction has a significant effect on the ball velocity.

The quasi-static assumption means that by ramping the torque slowly, the dynamic
effects are negligible. Judging by the accelerations seen in Figure 5a-b (1-2 rad/s) and Ib,
the left side of equation (7) is small (< 0.1 Nm) compared to the right side (> 5 Nm) making
the quasi-static assumption reasonable.

7

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

model

drive1

drive2

idle1

idle2

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

model

drive1

drive2

idle1

idle2

(a) Positive x Direction, Ramp = 100 (b) Negative x Direction, Ramp = 100

0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

20

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

model

drive1

drive2

idle1

idle2

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

model

drive1

drive2

idle1

idle2

(c) Positive y Direction, Ramp = 100 (d) Negative y Direction, Ramp = 100

Figure 5: Friction Test and Simulation Results

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

all terms

static and viscous

static

no friction

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

time (s)

ba
ll

ve
lo

ci
ty

 (
ra

d/
s)

all terms

no coulomb

(a) Output of Limited Friction Models (b) Output of Better Friction Models

Figure 6: Comparison of Friction Models

8

2.1.3 Actuation Model

The actuation model is found in the “Control and Actuation/Actuation and Friction” block
of Figure 4. Figure 7 is a block diagram of the Ballbot actuation system. An input is sent
to the digital to analog converter (DAC) which outputs a voltage to the amplifier. The
amplifier sends a current to the motor which outputs a torque to the roller. The roller then
transmits a torque to the ball. In each block the input is multiplied by the number in the
block to produce the output.

Figure 7: Actuation System Block Diagram

Below are the DAC output voltage, VDAC , amplifier output current, Iout, and motor
torque, τr, expressed in terms of the DAC input, CDAC . The DAC input is an integer in the
range -2048 to 2047 and has units counts.

VDAC =
10 ∗ CDAC
Cmax

=
10 ∗ CDAC

2047
≈ 0.00489 ∗ CDAC V (8)

where the maximum magnitude DAC input, Cmax, is 2047. We have assumed that the
amplifier operates in torque mode. According to page 23 of the amplifier spec sheet, the
amplifier outputs a current, Iout, according to:

Iout =
VDACIpeak

10
A =

10 ∗ CDAC ∗ 20

2047 ∗ 10
A ≈ 0.00977 ∗ CDAC A (9)

where Ipeak=20A is the peak current limit. If the magnitude of Iout is greater than Ipeak,
then Iout=Ipeaksign(Iout). In the real amplifier (Copley Controls Model 412), if the continuous
current limit is exceeded, a capacitor with a 1 second time constant at peak current begins to
charge. When it is fully charged, the output current decays exponentially to the continuous
current. The simulation models this as follows: If the magnitude of Iout is greater than
Icont=10 A, the continuous current limit, an integral begins accumulating. If the integral
is less than 14.427, then Iout=Iout, otherwise Iout=Icontsign(Iout). The 14.427 was chosen so
that the integral acts like the real circuit. Note that the peak and continuous current limits
can be changed in the amplifier.

9

The torque constant, Kτ , for the motor is 0.133 Nm/A. To convert DAC input to motor
torque,

τr = IoutKτ ≈ 0.00977 ∗ CDAC A ∗ 0.133
Nm

A
≈ 0.00130 ∗ CDAC Nm (10)

which assuming no losses, is the torque applied to the roller τr.

2.2 2D Ballbot with Arms Model

In order to design controllers we derive equations of motion for Ballbot. The dynamics of
Ballbot with arms are derived using the Lagrangian formulation. Figure 8 shows a planar
model of Ballbot. The planar equations of motion (and the corresponding planar controllers)
are much simpler both to derive, understand, and implement than the 3D equations. Two
perpendicular planar models can represent a 3D Ballbot accurately if Ballbot operates near
the upright standing position where coupling effects between the two planes is small. The
planar model is likely not as accurate in the case of arms that will operate out of the plane.
Note that:

• φ is measured with respect to the fixed world vertical, just as the IMU on the physical
robot measures pitch and roll.

• θ is measured with respect to moving φ, just as the encoders on the physical robot
measure the position of the ball.

• ψ is measured with respect to the moving φ, like the arm encoders would measure the
arm angles on the physical robot.

l

y

B
la

a
cm

Figure 8: Planar Ballbot Model

The position of the ball, pb, the position of the body, pB, and the position of the arm, pa are:

10

pb =

rb (θ + φ)
0
0

pB =

rb (θ + φ) + lB sinφ
0

lB cosφ

pa =

rb (θ + φ) + la sinφ− acm (cos φ sinψ + sinφ cosψ)
0

la cosφ+ acm (sinφ sinψ + cosφ cosψ)

The velocity of the ball, vb, the velocity of the body, vB, and the velocity of the arm, va are:

vb =

rb

(

θ̇ + φ̇
)

0
0

vB =

rb

(

θ̇ + φ̇
)

+ lBφ̇ cosφ

0

−lBφ̇ sin φ

va =

rb

(

θ̇ + φ̇
)

+ laφ̇ cosφ+ acm

(

φ̇ sinφ sinψ − ψ̇ cos φ cosψ − φ̇ cosφ cosψ + ψ̇ sinφ sinψ
)

0

−laφ̇ sinφ+ acm

(

φ̇ cosφ sinψ + ψ̇ sinφ cosψ + φ̇ sinφ cosψ + ψ̇ cosφ sinψ
)

The kinetic energy of the ball, Tb, the kinetic energy of the body, TB, and the kinetic energy
of the arm, Ta, are:

Tb =
1

2
mbvb

Tvb +
1

2
Ib

(

θ̇ + φ̇
)2

TB =
1

2
mBvB

TvB +
1

2
IBφ̇

2

Ta =
1

2
mava

Tva +
1

2
Ia

(

ψ̇ + φ̇
)2

The potential energy of the ball, Vb, the potential energy of the body, VB, and the potential
energy of the arm, Va, are:

Vb = 0

VB = −mBglB cosφ

Va = −mBg (la cosφ+ acm (sinφ sinψ − cosφ cosψ))

The Lagrangian, L, is the total kinetic energy minus the total potential energy.

11

L = T − V

The Lagrangian formulation dictates:

d

dt

∂L

∂θ̇
−
∂L

∂θ
= τ1 (11)

d

dt

∂L

∂φ̇
−
∂L

∂φ
= 0 (12)

d

dt

∂L

∂ψ̇
−
∂L

∂ψ
= τ3 (13)

where τ1 is the torque applied to the ball by the rollers (including friction), and τ3 is the arm
torque. Evaluating equations (11-13) using the Matlab r© symbolic package and rearranging
yields the following equation of motion.

M

θ̈

φ̈

ψ̈

 + C

φ̇2

ψ̇2

φ̇ψ̇

 +G = T (14)

where M is the 3x3 mass matrix with columns, M(:, 1), M(:, 2), and M(:, 3),

M(:, 1) =

mr2

b + Ib
mr2

b + rb (cosφ (mBlB +mala) −maacm cos (φ+ ψ)) + Ib
−marbcma cos (φ+ ψ)

M(:, 2) =

mr2

b + rb (mBlB cosφ+mala cosφ−maacm cos (φ+ ψ)) + Ib
mr2

b + 2rb (cosφ (mBlB +mala) −maacm cos (φ+ ψ)) +mBl
2

B +ma (l2a + a2

cm) + I

−marbcma cos (φ+ ψ) −malaacm cosψ +maa
2

cm + Ia

M(:, 3) =

marbacm cos (φ+ ψ)
−marbacm cos (φ+ ψ) −malaacm cosψ +maa

2

cm + Ia
mac

2

ma + Ia

m is the sum of the three masses,

m = mb +mb +ma

I is the sum of the three inertias,

I = Ib + IB + Ia

C is the 3x3 matrix of coriolis and centrifugal terms with columns C(:, 1), C(:, 2), and C(:, 3),

C(:, 1) =

−rb (sinφ (mBlB +mala) −maacm sin (φ+ ψ))
−rb (sinφ (mBlB +mala) −maacm sin (φ+ ψ))

−malacma sinψ

12

C(:, 2) =

marbacm sin (φ+ ψ)
marbacm sin (φ+ ψ) +malaacm sinψ

0

C(:, 3) =

2marbacm sin (φ+ ψ)
2marbacm sin (φ+ ψ) + 2malaacm sinψ

0

G is the 3x1 gravity matrix,

G =

0
mBlBg sin φ+malag sin φ−maacmg sin (φ+ ψ)

−maacmg sin (φ+ ψ)

and U is the 3x1 matrix of applied torques.

U =

τr − τs − τc − γvθ̇

0

τa − γvaψ̇

where γva is the coefficient of viscous friction for the arms.
To apply linear control strategies we must linearize this system using the form of equation

(15).

ẋ =
dẋ

dx
x+

dẋ

du
u (15)

where the state vector is x =
[

θ φ ψ θ̇ φ̇ ψ̇
]T

, and the input vector is u = [τr τa]
T. We

linearize the system of equation (14) about the equilibrium point θ = φ = ψ = θ̇ = φ̇ = ψ̇ = 0
to fit the system of equation (15). This corresponds to Ballbot standing upright up with its
arms at its sides.

3 Independent Balancing and Arm Controllers

The logical first step for implementing arms with Ballbot is to design an arm controller
that works independently of an existing balancing/station keeping controller that uses only
the rollers. To control the rollers we design a planar linear quadratic regulator (LQR)[1]

excluding the arm states. In this case the state vector is x =
[

θ φ θ̇ φ̇
]T

, and the input

vector is u = τr. LQR finds a state feedback law, u = −Kx that minimizes the following
cost function near the linearization point.

J =

∫

(

xTQx+ uTRu
)

dt

where Q is a 4x4 matrix of weights for the states, and R is the weight for the applied torque.
The diagonal terms in Q correspond to the ball position, θ, the body angle, φ, the ball

13

velocity, θ̇, and the body angular velocity, φ̇. The Q and R used to obtain the results that
follow are:

Q =

3000 0 0 0
0 30 0 0
0 0 30 0
0 0 0 30

and R = 1. These values were chosen only to achieve reasonable balancing (qualitatively),
and not to achieve any specific quantitative performance goal. They are intended to give
high importance to the ball position (first diagonal term) and low importance to the torque
used. The Matlab r© command dlqr finds K for the given linear system of equation (15). In
order to make Ballbot move we define the augmented control law,

u = −K (x− xp) (16)

where xp is a vector of desired states that can change in time. In other words, if Ballbot is
doing something other than station keeping (non-zero desired state), we must specify xp as
a function of time. We choose the body tilt angle path, φp, and angular velocity path, φ̇p
to be zero at all times. We choose the ball position path, θp, to be a quintic polynomial in
time as in equation (17) and ball velocity path, θ̇p, as the derivative of the polynomial as in
equation (18).

θp = At5 +Bt4 + Ct3 +Dt2 + Et+ F (17)

and

θ̇p = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E (18)

If one defines initial and final (or even a knot point in between) positions, velocities, and
accelerations, one can solve for the coefficients, A, B, C, D, E, and F . The choice of a
quintic polynomial is to ensure smooth accelerations and thus smooth torques. Sciavicco
and Siciliano [8] suggest using a polynomial joint trajectory when no specific trajectory is
desired between points. Eventually we will determine trajectories which respect Ballbot’s
dynamic constraints (e.g. the body must lean forward and the ball must move backward
before Ballbot moves forward while the quintic polynomial moves forward immediately).

Equation (16) defines a planar controller. The real Ballbot and the SimMechanics simu-
lation are both in 3D, so in practice we use two independent planar controllers. The first is
for x ball movement, θx and θ̇x, and x body movement, namely pitch and pitch rate, φy and
φ̇y. The second is for y ball movement, θy and θ̇y, and y body movement, φx and φ̇x. Two
independent planar controllers will be most effective when the body is near its equilibrium
point and coupling between x and y dynamics is small.

Each arm degree of freedom (2 DoF for each arm) is controlled independently with a PD
controller defined in equation (19)

τa = Pψ (ψ − ψp) +Dψ

(

ψ̇ − ψ̇p

)

(19)

14

where Pψ and Dψ are the gains, and ψp and ψ̇p are desired arm paths defined by quintic
polynomials similar to equations (17) and (18). This controller requires solving the inverse
kinematics problem for ψp and ψ̇p given a goal point in space. The inverse kinematics problem
is not solved here because this work deals only with simple movements (e.g. lifting the arms
in the x direction).

4 Unified Balancing and Arm Controller

There might be some cases where coordinating roller and arm movement is desirable. One
example is when lifting a heavy object causes the Ballbot to begin to lose balance. With the
independent controllers of the previous sections, the arms might continue to lift and cause
Ballbot to fall. With a unified controller, the arms might lower the heavy object to regain
balance.

Again we turn to LQR using the full state vector x =
[

θ φ ψ θ̇ φ̇ ψ̇
]T

, and the input

vector u = [τr τa]
T and linearizing equation (14) about the zero state. This time Q is a 6x6

matrix of weights for the states and R is a 2x2 matrix of the weights for the applied torques.
The Q and R used to obtain the results that follow are:

Q =

3000 0 0 0 0 0
0 30 0 0 0 0
0 0 3000 0 0 0
0 0 0 30 0 0
0 0 0 0 30 0
0 0 0 0 0 30

and

R =

[

1 0
0 1

]

This means that the relative importance of the ball position, θ, and the arm angle, ψ, is high
and again the importance of the torque is low.

When merely balancing, an LQR controller optimized to operate around the standing
position with arms down is effective. In situations where Ballbot must move its arms (reach
for something on a shelf, or carry a drink, for instance) this controller is not sufficient. First,
LQR is a linear controller, and the sines and cosines in the gravity terms when the arms
move away from the sides of Ballbot are nonlinear. Second, the gains for moving the arms
are optimized for movement around the zero position where gravity has little effect. When
lifting the arms, gravity works against the motion, and the LQR derived controller does not
apply enough torque to move the arms very far. To make up for this, we introduce gravity
compensation [8] for the arms. The arm torque, τa is a combination of the torque, τLQR,
prescribed by the LQR gains (a feedback torque) and gravity (a feed forward torque).

τa = τLQR +maacmg sinψ (20)

15

Gravity compensation fixes the two problems mentioned above. It essentially takes away the
nonlinear gravity terms and allows control about non-zero arm positions.

This unified controller is also a planar controller, and in practice we use two planar
controllers. In the previous section we assumed that the x and y dynamics are uncoupled
when Ballbot is standing. Here the arms certainly have coupled dynamics in any out of plane
movement. This controller is most effective when operating in the plane. Planar arm control
is not a final solution. The unified controller of this section is intended to demonstrate
the possible benefits of the unified approach vs. the independent roller and arm controller
approach.

5 Performance

The purpose of these simulations was to:

• Tune an arm controller independent of the balancing controller. For a number of simple
movements (lifting the arms in various directions) can the controller follow the desired
path? How much torque is required?

• Observe the behavior of the balancing controller when the various arm motions are
executed. Determine what problems exist with the balancing controller as a result of
arm movement.

• Compare the behaviors of the independent controllers and the unified controller.

• Explore a few new control ideas.

One SimMechanics output is a visualization window, shown in Figure 9. The red parts
of the figure are what the visualization window actually shows. The black outline of the
Ballbot’s body and the black dots representing the connection points of the arms are added
for clarity. Red ellipsoids represent the bodies. The ellipsoids come from the inertia tensors
of the bodies. The actual top of the Ballbot body is about 1.5 m whereas its ellipsoid does
not extend that far. The arm ellipsoids extend further than the physical arms.

Figure 9: Example of SimMechanics Visualization Window

16

5.1 Arm Controller Performance

The basic design of the arms is an aluminum cylinder with a 1 kg hand. One test of the arm
controller is to lift both arms up along Ballbot’s sides (the y direction) as seen in Figure 10a.
This test was conducted using various hand masses to simulate what happens when Ballbot
lifts objects. Note that lifting both arms in opposite directions will not affect Ballbot’s
balance, allowing us to test the arm controller while Ballbot has perfect balance. The results
in Figure 10 are for 5 kg hands. Figure 10b shows that the peak torque required for this
action is 30.76 Nm. The peak torque required for 1 kg hands is 7.37 Nm. Figure 10c-d shows
that this controller follows the desired path very well.

Obviously the arms cannot supply an infinite amount of torque. Figure 11 shows results
from a simulation where a 15 Nm torque limit was put on the arm motors. Figure 11a-b
shows that when the motor saturates, the arms oscillate undamped (no friction is modeled)
about a position less than the desired position.

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(a) Final Pose (b) Torque vs. Time

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(c) Arm y Angle vs. Time (d) Arm y Angular Velocity vs. Time

Figure 10: Both 5 kg Arms Raised in y Direction

17

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(a) Arm y Angle vs. Time (b) Arm y Angular Velocity vs. Time

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(c) Torque vs. Time

Figure 11: Both 5 kg Arms Raised in y Direction with Saturated Torque

18

5.2 Balancing When Arms Move

Figure 12a shows the final pose of Ballbot raising one arm in the y direction. Note in Figure
12b-c that the ball moves to the right by about 6 cm and from Figure 12d-e that the body
leans to the left by about 1.3 degrees. When Ballbot raises an arm, it settles into a leaning
equilibrium that is different from the desired standing upright equilibrium where the body
angle is zero. The arm movement causes an overall change in the center of mass which
changes the equilibrium position. Figure 12f-g shows that the arm controller follows the
planned path well.

Figure 13a-f shows results of the same arm lifting simulation except with heavier 5 kg
arms. This models what might happen when Ballbot picks up a load. In this case the station
keeping/balancing controller fails. Figure 13a-b shows increasing ball oscillation and Figure
13c-d shows increasing body oscillation. As Ballbot loses its balance, the arm controller is
not as effective as seen near the end of Figure 13e-f. The increased arm mass causes a larger
change is the leaning equilibrium. Eventually the ball and body are far enough away from
the desired standing upright equilibrium that the station keeping/balancing controller fights
back. This causes the ball and body to oscillate between the leaning and standing upright
equilibria and finally fall.

(a) Final Pose

Figure 12: One 1 kg Arm Raised in y Direction

19

0 0.5 1 1.5 2 2.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

Y
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

Time (s)

Y
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(b) y Position vs. Time (c) y Velocity vs. Time

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

R
ol

l (
ra

di
an

s)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5
−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

R
ol

l R
at

e
(r

ad
ia

ns
/s

)

Actual Path

Planned Path

(d) Roll vs. Time (e) Roll Rate vs. Time

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(f) Arm y Angle vs. Time (g) Arm y Angular Velocity vs. Time

Figure 12: One 1 kg Arm Raised in y Direction

20

0 0.5 1 1.5 2 2.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Y
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Time (s)

Y
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(a) y Position vs. Time (b) y Velocity vs. Time

0 0.5 1 1.5 2 2.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

R
ol

l (
ra

di
an

s)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Time (s)

R
ol

l R
at

e
(r

ad
ia

ns
/s

)

Actual Path

Planned Path

(c) Roll vs. Time (d) Roll Rate vs. Time

0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

5

6

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(e) Arm y Angle vs. Time (f) Arm y Angular Velocity vs. Time

Figure 13: One 5 kg Arm Raised in y Direction

21

Raising the arms in opposite x directions causes Ballbot to rotate about its vertical axis
(a yaw). Figure 14a shows this pose in the xz plane. The xy plane view (from above)
of Figure 14 makes the yawing apparent, as Ballbot began the simulation facing in the x
direction. Keep in mind that no friction is modeled between the ground and ball or between
the body and ball. In the real case where there is friction, there might not be any yawing,
or at least there will be less yawing.

(a) Final Pose: xz View (b) Final Pose: xy View

Figure 14: 5 kg Arms Raised in Opposite x-Directions

Figure 15a-b is the final pose of Ballbot raising one arm in the x direction and out in
the y direction. This causes both a yaw (Figure 15b) and the leaning equilibrium (Figure
15b-f and i-l) seen earlier. Note that the leaning is in both the x and y directions. The arm
controller performs well (Figure 15g-h and m-n).

(a) Final Pose: 3D View (b) Final Pose: xy View

Figure 15: 1 kg Arm Raised in x and y Directions

22

0 0.5 1 1.5 2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(c) x Position vs. Time (d) x Velocity vs. Time

0 0.5 1 1.5 2
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(e) Pitch vs. Time (f) Pitch Rate vs. Time

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(g) x Arm Angle vs. Time (h) x Arm Angular Velocity vs. Time

Figure 15: 1 kg Arm Raised in x and y Directions

23

0 0.5 1 1.5 2
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

Y
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

Y
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(i) y Position vs. Time (j) y Velocity vs. Time

0 0.5 1 1.5 2
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

R
ol

l (
ra

di
an

s)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

R
ol

l R
at

e
(r

ad
ia

ns
/s

)

Actual Path

Planned Path

(k) Roll vs. Time (l) Roll Rate vs. Time

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(m) y Arm Angle vs. Time (n) y Arm Angular Velocity vs. Time

Figure 15: 1 kg Arm Raised in x and y Directions

24

Figure 16a-j shows results of Ballbot raising one arm in the y direction (as in Figure
12a) but starting off balance by 5 degrees of roll and pitch (rotations about x and y). Note
the initial roll (Figure 16g) and pitch (Figure 16c). Ballbot recovers its balance nicely and
establishes its leaning equilibrium. It finishes with non-zero x and y position and pitch and
roll and zero x and y velocity and pitch rate and roll rate. The arm controller is initially a
bit noisy (Figure 16j), but eventually follows the planned path closely.

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(a) x Position vs. Time (b) x Velocity vs. Time

0 0.5 1 1.5 2
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(c) Pitch vs. Time (d) Pitch Rate vs. Time

Figure 16: 1 kg Arms Raised in y Direction From Off Balance

25

0 0.5 1 1.5 2
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time (s)

Y
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

Time (s)

Y
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(e) y Position vs. Time (f) y Velocity vs. Time

0 0.5 1 1.5 2
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

R
ol

l (
ra

di
an

s)

Actual Path

Planned Path

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Time (s)

R
ol

l R
at

e
(r

ad
ia

ns
/s

)

Actual Path

Planned Path

(g) Roll vs. Time (h) Roll Rate vs. Time

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 Y Pos Actual

Arm 1 Y Pos Planned

Arm 2 Y Pos Actual

Arm 2 Y Pos Planned

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 Y Vel Actual

Arm 1 Y Vel Planned

Arm 2 Y Vel Actual

Arm 2 Y Vel Planned

(i) y Arm Angle vs. Time (j) y Arm Angular Velocity vs. Time

Figure 16: 1 kg Arms Raised in y Direction From Off Balance

26

5.3 Compare Independent to Unified Control Approach

Figure 17a-b shows the final pose of Ballbot lifting its arms in the x direction using the
independent controllers and the unified controller. The controllers show very similar perfor-
mance (Figure 17c-j) in that Ballbot assumes the leaning equilibrium in both cases. With
both control strategies the ball moves about 10 cm to the right and leans about 2.3 degrees
to the left. We can see from Figure 17k-n that the independent arm controller follows the
planned path slightly better than the unified controller does, while the unified controller
requires slightly less torque (Figure 17o-p).

(a) Final Pose: Independent Controllers (b) Final Pose: Unified Controller

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

(c) x Position vs. Time: Independent (d) x Position vs. Time: Unified

Figure 17: Both 1kg Arms Raised in x-Direction: Compare Independent and Unified Control

27

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(e) x Velocity vs. Time: Independent (f) x Velocity vs. Time: Unified

0 0.5 1 1.5 2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

(g) Pitch vs. Time: Independent (h) Pitch vs. Time: Unified

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(i) Pitch Rate vs. Time: Independent (j) Pitch Rate vs. Time: Unified

Figure 17: Both 1kg Arms Raised in x-Direction: Compare Independent and Unified Control

28

0 0.5 1 1.5 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 0.5 1 1.5 2
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

(k) x Arm Angle vs Time: Independent (l) x Arm Angle vs. Time: Unified

0 0.5 1 1.5 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

0 0.5 1 1.5 2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(m) x Arm Ang. Vel. vs. Time: Independent (n) x Arm Ang. Vel. vs. Time: Unified

0 0.5 1 1.5 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

0 0.5 1 1.5 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(o) Arm Torque vs. Time: Independent (p) Arm Torque vs. Time: Unified

Figure 17: Both 1kg Arms Raised in x-Direction: Compare Independent and Unified Control

29

When executing the same x lifting motion with heavier 5 kg arms, the results are different.
This time the independent controller (Figure 18a) fails almost immediately, and the unified
controller (Figure 18b) balances for longer. The independent arm controller follows the
planned path closely and uses more arm torque (Figure 18k, m, and o) while the unified
controller deviates from the planned arm path and uses less arm torque (Figure 18l, n, and
p) in order to stay balancing for longer. The unified controller has “decided” to abandon the
goal of moving the arms to a desired position in favor of moving the arms to help balance.

The next comparison is recovering from a 16 degree initial body pitch (Figure 19). It is
obvious from Figure 19c-l that the unified controller is able to recover and the independent
controllers are not. The independent arm controller attempts to keep the arms at Ballbot’s
sides and uses small amounts of torque (Figure 19m, o, and q), while the unified controller
swings the arms to help balance using more torque (Figure 19n, p, and r).

(a) Final Pose: Independent Controllers (b) Final Pose: Unified Controller

0 0.5 1 1.5 2 2.5 3
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5 3 3.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

(c) x Position vs. Time: Independent (d) x Position vs. Time: Unified

Figure 18: Both 5kg Arms Raised in x Direction: Compare Independent and Unified Control

30

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(e) x Velocity vs. Time: Independent (f) x Velocity vs. Time: Unified

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5 3 3.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

(g) Pitch vs. Time: Independent (h) Pitch vs. Time: Unified

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(i) Pitch Rate vs. Time: Independent (j) Pitch Rate vs. Time: Unified

Figure 18: Both 5kg Arms Raised in x Direction: Compare Independent and Unified Control

31

0 0.5 1 1.5 2 2.5 3
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 0.5 1 1.5 2 2.5 3 3.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

(k) x Arm Angle vs. Time: Independent (l) x Arm Angle vs. Time: Unified

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

0 0.5 1 1.5 2 2.5 3 3.5
−4

−3

−2

−1

0

1

2

3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(m) x Arm Ang. Vel. vs. Time: Independent (n) x Arm Ang. Vel. vs. Time: Unified

0 0.5 1 1.5 2 2.5 3
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

0 0.5 1 1.5 2 2.5 3 3.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(o) Arm Torque vs. Time: Independent (p) Arm Torque vs. Time: Unified

Figure 18: Both 5kg Arms Raised in x Direction: Compare Independent and Unified Control

32

(a) Initial Pose: Independent Controllers (b) Initial Pose: Unified Controller

(c) Final Pose: Independent Controllers (d) Final Pose: Unified Controller

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

(e) x Position vs. Time: Independent (f) x Position vs. Time: Unified

Figure 19: Extreme Balancing: Compare Independent and Unified Control

33

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−3

−2

−1

0

1

2

3

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(g) x Velocity vs. Time: Independent (h) x Velocity vs. Time: Unified

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

(i) Pitch vs. Time: Independent (j) Pitch vs. Time: Unified

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

0 1 2 3 4 5
−2

−1

0

1

2

3

4

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(k) Pitch Rate vs. Time: Independent (l) Pitch Rate vs. Time: Unified

Figure 19: Extreme Balancing: Compare Independent and Unified Control

34

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

(m) x Arm Angle vs. Time: Independent (n) x Arm Angle vs. Time: Unified

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(o) x Arm Ang. Vel. vs. Time: Independent (p) x Arm Ang. Vel. vs. Time: Unified

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(q) Arm Torque vs. Time: Independent (r) Arm Torque vs. Time: Unified

Figure 19: Extreme Balancing: Compare Independent and Unified Control

35

The next simulation is Ballbot waiting one second and then attempting to move 1 m in the
x direction in the next 3 seconds (Figure 20a-n). The unified controller, which uses its arms
to aid movement, gets to the goal slightly faster as seen in (Figure 20a-b). The independent
arm controller, which is trying to keep its arms at Ballbot’s sides, has higher frequency (albeit
very small) arm oscillations (Figure 20i, k, and m) while the unified controller operates more
smoothly (Figure 20j, l, and n).

As stated in section 4, the unified controller is two planar controllers, and its weakness
is out of plane arm motion. Figure 21a-b shows that with an initial out of plane body angle
(5 degrees of roll and pitch), the unified controller can still balance Ballbot. This balancing
scenario does not require much arm motion. Excessive out of plane arm motion might cause
Ballbot to fall.

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

(a) x Position vs. Time: Independent (b) x Position vs. Time: Unified

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(c) x Velocity vs. Time: Independent (d) x Velocity vs. Time: Unified

Figure 20: Move 1m in 3 seconds: Compare Independent and Unified Control

36

0 1 2 3 4 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 1 2 3 4 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

(e) Pitch vs. Time: Independent (f) Pitch vs. Time: Unified

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(g) Pitch Rate vs. Time: Independent (h) Pitch Rate vs. Time: Unified

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

(i) x Arm Angle vs. Time: Independent (j) x Arm Angle vs. Time: Unified

Figure 20: Move 1m in 3 seconds: Compare Independent and Unified Control

37

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

0 1 2 3 4 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(k) x Arm Ang. Vel. vs. Time: Independent (l) x Arm Ang. Vel. vs. Time: Unified

0 1 2 3 4 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(m) Arm Torque vs. Time: Independent (n) Arm Torque vs. Time: Unified

Figure 20: Move 1m in 3 seconds: Compare Independent and Unified Control

(a) Initial Pose (b) Final Pose

Figure 21: Unified Controller Balancing Out of Plane

38

5.4 New Ideas

Two other means of controlling Ballbot were briefly explored. The first is using only the
arms to balance starting from a 1 degree body pitch. Figure 22a-g shows that Ballbot even-
tually falls down with this specific arm-only controller. Note in Figure 22c-d that Ballbot
does reverse its pitch before going unstable. This requires a large initial torque (Figure 22g)
of over 100 Nm. This large torque makes balancing using only arms unpractical.

The second new idea is inspired by the Segway personal mobility device (www.segway.com)
and the Robotic Mobility Platform [7]. These devices balance in 2D and move by leaning
forward. The lean causes the controller to accelerate to regain the robot’s balance. It is
possible that Ballbot can move by inducing the same body lean by moving its arms. Here
we control Ballbot’s forward motion by defining a ball path and applying an arm torque
proportional to the planned ball velocity while damping the arm motion so that the arms do
not swing out of control. Figure 23a-d show that this is a feasible approach, but at least in
this initial trial, this strategy does not follow the planned path as closely as the controllers
described earlier (see Figure 20).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−8

−6

−4

−2

0

2

4

6

8

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(a) x Position vs. Time (b) x Velocity vs. Time

Figure 22: Balancing With Only Arms

39

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

Pi
tc

h
(r

ad
ia

ns
)

Actual Path

Planned Path

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−15

−10

−5

0

5

10

15

Time (s)

Pi
tc

h
R

at
e

(r
ad

ia
ns

/s
)

Actual Path

Planned Path

(c) Pitch vs. Time (d) Pitch Rate vs. Time

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−4

−3

−2

−1

0

1

2

3

4

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−140

−120

−100

−80

−60

−40

−20

0

20

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(e) Arm x Angle vs. Time (f) Arm x Ang. Vel. vs. Time

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1000

−800

−600

−400

−200

0

200

400

600

800

Time (s)

T
or

qu
e

A
rm

 1
 (

N
m

)

X

Y

(g) Arm Torque vs. Time

Figure 22: Balancing With Only Arms

40

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 P

os
iti

on
 (

m
)

Actual Path

Planned Path

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

X
 V

el
oc

ity
 (

m
/s

)

Actual Path

Planned Path

(a) x Position vs. Time (b) x Velocity vs. Time

0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

Po
si

tio
n

(r
ad

ia
ns

)

Arm 1 X Pos Actual

Arm 1 X Pos Planned

Arm 2 X Pos Actual

Arm 2 X Pos Planned

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

V
el

oc
ity

 (
ra

di
an

s/
s)

Arm 1 X Vel Actual

Arm 1 X Vel Planned

Arm 2 X Vel Actual

Arm 2 X Vel Planned

(c) Arm x Angle vs. Time (d) Arm x Angular Velocity. vs. Time

Figure 23: Driving Body Movement With Arms

6 Conclusions and Future Work

This work examined the dynamics of a dynamically stable mobile robot with arms and
explored two control strategies. The first control strategy uses independent controllers for
balancing/station keeping (ball and body feedback to drive the rollers) and for the arms
(arm feedback to drive the arms). The second controller is a unified controller with full
state feedback (ball, body, and arms) to drive the rollers and arms. From the results of
simulations, we make these conclusions:

• When working independently of the balancing/station keeping controller, the PD arm
controller followed simple planned arm trajectories very well. The exception is in
extreme cases when Ballbot is falling.

• For both the independent controllers and the unified controller, Ballbot assumes a
leaning equilibrium when the arms move. This moves Ballbot’s center of mass.

41

• Both control strategies try to drive Ballbot to a standing equilibrium. When Ballbot
carries a heavy load, the leaning equilibrium is significantly different than the standing
equilibrium. In this case, the independent controllers cannot stabilize Ballbot because
the controller tries to keep the arms up. The unified controller also fails in this cir-
cumstance, but unified balancing/arm control in general might prove to be successful
in handling heavy loads.

• In cases where there is no planned arm motion (simply balancing or simply moving)
the unified controller outperforms the independent controllers. This is because the arm
controller uses it arms to help balance or move Ballbot’s body.

• The unified arm controller uses gravity compensation. This strategy only works when
the gravity forces are known. If Ballbot carries an object of unknown mass, Ballbot
does not know how to compensate for its weight. Another problem of unknown objects
is possible saturation of the arm motors which causes arm oscillations.

• The SimMechanics simulation does not handle yaw well because of a software quirk in
specifying constraints.

To overcome some of the problems mentioned the following work is suggested:

• Because of the conflict between a leaning equilibrium and the standing equilibrium new
control strategies should be explored. Calculating the natural equilibrium point online
and setting that as the control goal is an obvious idea to try. Research in humanoid
balancing provides a wealth of resources including momentum methods [10] and zero
moment point methods [3].

• Instead of using LQR to balance Ballbot while arms act independently as disturbances,
treat the arms as disturbances and try a disturbance rejection strategy such as H

∞
[2].

• Explore other unified control strategies or a hybrid strategy that uses independent
controllers in some cases and a unified controller in other cases.

• Explore adaptive controllers or online load estimation to compensate for heavy or
unknown loads.

These tasks need to be done to advance Ballbot in general:

• First and foremost, develop an interface/operating environment like RHexLib to make
Ballbot testing easy.

• Solve the yaw problem in SimMechanics or use other software that has a more flexible
way of defining constraints.

• The controllers of this paper are planar. This is because of the complexity of Ballbot’s
3D dynamics. 3D controllers must be developed for the arms especially. The ball and
body control problem also becomes a 3D problem when the body is away from the
standing equilibrium as it is when carrying heavy loads.

42

• Develop better trajectory plans for both the ball/body and the arms. The quintic
polynomial is smooth, but it does not always plan things that are physically possible.
For example, Ballbot cannot begin moving forward immediately. It must develop a
forward lean first which causes it to move backward.

• Develop better contact models. The friction model here lumps all friction into friction
between the ball and rollers. There is also contact between the ground and ball and
between the body and ball. A good starting reference is Montana [6].

• Determine the parameters of the system experimentally. Some of the parameters were
measured directly (body and ball mass and center of mass) and others are taken from
data sheets (the entire actuation system like the motor torque constant). Run tests
to tune or even optimize the physical parameters so that the simulation fits the real
Ballbot test data.

7 References

[1] Ȧström, K.J. and Wittenmark, B. Computer-Controlled Systems: Theory and Design.
3rd Ed., Prentice Hall, Upper Saddle River, NJ, 1997.
[2] Chen, B. H

∞
Control and Its Applications, Springer, London, 1998.

[3] Erbatur, K., Obazaki, A., Obiya, K., Takahashi, T., and Kawamura, A. ”A Study on the
Zero Moment Point Measurement for Biped Walking Robots”, Proc. of the 7th International

Workshop on Advanced Motion Control, 3-5 July, 2002, Pages 431-436.
[4] Lauwers, T.B., Kantor, G.A., and Hollis, R.L. ”One is Enough!” Proc. of 2005 Interna-

tional Symposium of Robotics Research, October 12-15, 2005.
[5] Lauwers, T.B., Kantor, G.A., and Hollis, R.L. ”A Dynamically Stable Single-Wheeled
Mobile Robot With Inverse Mouse-Ball Drive”. Proc. of 2006 IEEE International Confer-

ence on Robotics and Automation, May 15-19, 2006, Pages:2884 - 2889.
[6] Montana, D.J., ”The Kinematics of Contact and Grasp” International Journal of Robotics

Research, Vol. 7, No. 3, June, 1988, pages 17-32.
[7] Nguyen, J., Morrell, J., Mullens, A., Burnmeister, S., Farrington, K., Thomas, K., and
Gage, D. ”Segway Robotic Mobility Platform”. Proc. of SPIE - Volume 5609: Mobile Robots

XVII, October, 2004.
[8] Sciavicco, L. and Siciliano, B. Modelling and Control of Robot Manipulators. 2nd Ed.,
Springer, London, 2000.
[9] Thibodeau, B.J., Deegan, P., and Grupen, R. ”Static Analysis of Contact Forces With
a Mobile Manipulator”. Proc. of 2006 IEEE International Conference on Robotics and

Automation, May 15-19, 2006, Pages:4007 - 4012.
[10] Yoshida, E., Guan, Y., Sian, N.E., Hugel, V., Blazevic, P., Kheddar, A., and Yokoi,
K. ”Motion Planning for Whole Body Tasks by Humanoid Robots”, Proc. of 2005 IEEE

International Conference on Mechatronics and Automation, July, 2005, Pages 1784-1789.

43

A SimMechanics Block Diagrams

A.1 Independent Controllers

Figure 24 is a lower level SimMechanics block diagram of the “Control and Actuation” block
in Figure 4. Starting from the left side of the figure, one sees the “X Sensor” block which
senses the angular position and velocity of the revolute joint connecting the “Body” and the
“x1 roller” in Figure 4. The range of the angular position measurement is 0 to 2π, so it
is converted to a continuous angle in the next block. Below the “X Sensor” is the “Body
Sensor” block which outputs the orientation of the body in the form of a quaternion and
quaternion derivative. The next block converts the quaternion to pitch, pitch rate, roll, and
roll rate. Below the “Body Sensor” is the “Path” block. This block takes a distance, the
desired number of seconds in which to move that distance, an amount of time to wait before
moving, and a direction and creates a path according to equations (17) and (18). Below the
“Path” block is the “Y Sensor” which measures the angular position and velocity of the joint
connecting the “Body” and the “y1 roller” in Figure 4. Moving to the right, the augmented
(continuous angles and quaternion changed to pitch and roll) outputs of these three sensor
blocks and the “Path” block output are input to the “Controller”. The “Controller” outputs
a signal to the “Actuation and Friction” block, which in turn sends torques (after being
divided by two by the two gain blocks to split the overall torque between the two motors)
to the four roller actuation blocks, “x1 Act”, “x2 Act”, “y1 Act”, and “y2 Act”.

7

Act Y2

6

Act Y1

5

Act X1

4

Act X2

3

Sense X

2

Sense Body

1

Sense Y

0

y direction

0

x direction

1

wait time

3

move time

1

distance

Y2 Act

Y1 Act

ap

av

Y Sensor

Y Dac

Angle

Rate
Continuous Angle

Y Continuous Angle

X2 Act

X1 Act

ap

av

X Sensor

X Dac

Angle

Rate
Continuous Angle

X Continuous Angle1

dist

move

dead

xdir

ydir

time

xpath

xvelpath

pitchpath

pitchratepath

ypath

yvelpath

rollpath

rollratepath

fcn

Path

.5

Gain1

.5

Gain

u

pitch

pitchrate

roll

rollrate

fcn

X Ball/Body

Y Ball/Body

Y DAC

X DAC

Controller

Clock

Body Sensor

Y Vel

X Vel

DAC Y

DAC X

Torque Y

Torque X

Actuation
and Friction

Figure 24: Ball Control and Actuation Block for Independent Controllers Model

Figure 25 is a lower level SimMechanics block diagram of the “Controller Block” in
Figure 24. It takes all of the sensor data described above and inputs them into two identical
controllers - one in the x direction and one in the y direction Moving from left to right, each
controller takes the differences between roller position, roller velocity, body angle (either roll

44

or pitch), and body velocity and their respective paths (all measured in radians). These
differences are multiplied by gains and then added together and multiplied by negative one.
This results in a torque (in Nm) to be applied to the ball. The ball torque is first converted
to a roller torque and then to a DAC input.

2

X DAC

1

Y DAC

Y Vel

−K−

Y Roller Torque
to DAC

Y Pos

Y Dac

Y Ball/Body
Cont

−K−

Y Ball Torque
to Roller Torque1

−K−

Y Ball Torque
to Roller Torque

X Vel
−K−

X Roller Torque
to DAC

X Pos

X Dac

X Ball/Body
Cont

−K−

X Ball Torque
to Roller Torque1

−K−

X Ball Torque
to Roller Torque

roll

To Workspace9

xcont

To Workspace8

yvel

To Workspace7

xvel

To Workspace6

ypos

To Workspace5

xpos

To Workspace4

xdac

To Workspace3

ydac

To Workspace2

rollrate

To Workspace12

pitchrate

To Workspace11

pitch

To Workspace10

ycont

To Workspace1

Subtract1

Subtract

Roll
Rate

Roll

Pitch
Rate

Pitch

−3.1

P_PosY

−3.1

P_PosX

1212.6

P_AngleY

−1212.6

P_AngleX

−2.5

D_PosY

−2.5

D_PosX

374.1

D_AngleY

−374.1

D_AngleX

2

Y Ball/Body

1

X Ball/Body

Figure 25: Ball Controller Block for Independent Controllers Model

Figure 26 is a lower level SimMechanics block diagram of the “Actuation and Friction”
block in Figure 24. This block contains the actuation model summarized by Figure 7. The
blocks “Handle X Friction” and “Handle Y Friction” contain Matlab code that implements

45

the friction model described in Section 2.1.2.

2

Torque X

1

Torque Y

Y DAC
 Saturation

X DAC
Saturation

2

Volt to Current1

2

Volt to Current

xtorque

To Workspace4

ytorque

To Workspace1

Peak Current
Limit1

Peak Current
Limit

0.133

Motor Torque
Constant1 (Nm/Amp)

0.133

Motor Torque
Constant (Nm/Amp)

1
s

Integrator1

1
s

Integrator

current

integral
i_outfcn

Handle Y Cont
Current Limit

yvel_in

ty_in

ty_outfcn

Handle Y
Friction

current

integral
i_outfcn

Handle X Cont
Current Limit

xvel_in

tx_in

tx_outfcn

Handle X
Friction

10/2047

DAC to Volt1

10/2047

DAC to Volt

0

0

10

Cont Current
Limit1

10

Cont Current
Limit

4

DAC X

3

DAC Y

2

X Vel

1

Y Vel

Figure 26: Actuation and Friction Block for Both Models

Figure 27 is a lower level SimMechanics block diagram of the “Arm Controller” block in
Figure 4. At the bottom are four blocks with light blue outlines. These are the arm sensors.
They sense the angular position and velocity of the x and y rotations of each arm. Also at the
bottom is the “Path” block which is similar to the “Path” block in Figure 24. The outputs of
the arm sensors and the “Path” block are sent to the “Controller” block. The “Controller”
outputs torques (in Nm) which are compared to torque limits in the “Saturation” blocks.
The outputs of the “Saturation” blocks are sent to the four arm actuation blocks, “Arm1x
Torque”, “Arm1y Torque”, “Arm2x Torque”, and “Arm2y Torque”. These four blocks apply
torques to the arms.

46

4

Sense Arm2

3

Sense Arm1

2

Act
Arm2

1

Act
Arm1

2

arm move
time

−C−

arm
dist3

0

arm
dist2

−C−

arm
dist1

0

arm
dist

arm1ytorque

To Workspace9

arm1xtorque

To Workspace8

arm2xpos

To Workspace7

arm1xpos

To Workspace6

arm2xvel

To Workspace5

arm1xvel

To Workspace4

arm1ypos

To Workspace3

arm1yvel

To Workspace2

time

To Workspace12

arm2ytorque

To Workspace11

arm2xtorque

To Workspace10

arm2ypos

To Workspace1

arm2yvel

To Workspace Saturation3

Saturation2

Saturation1

Saturation

arm1_xdist

arm1_ydist

arm2_xdist

arm2_ydist

arm_move

arm_time

arm1_xpath

arm1_xvelpath

arm2_xpath

arm2_xvelpath

arm1_ypath

arm1_yvelpath

arm2_ypath

arm2_yvelpath

fcn

Path1

Mechanical
Branching

Bar3

Mechanical
Branching

Bar2

X Arms

Y Arms

Y1 Torque

X1 Torque

X2 Torque

Y2 Torque2

Controller

Clock1

Arm2y
Torque

ap

av

Arm2y Arm2x
Torque

ap

av

Arm2x

Arm2
YVel

Arm2
YPOS

Arm2
XVel

Arm2
XPos

Arm1y
torque

ap

av

Arm1y

Arm1x
Torque

ap

av

Arm1x

Arm1
YVel

Arm1
YPos

Arm1
XVel

Arm1
XPos

Act
Arm2y

Act
Arm2x

Act
Arm1y

Act
Arm1x

F
igu

re
27:

A
rm

C
on

trol
an

d
A

ctu
ation

B
lo

ck
for

In
d
ep

en
d
en

t
C

on
trollers

M
o
d
el

47

Figure 28 is a lower level SimMechanics block diagram of the “Controller Block” in Figure
27. It shows four identical PD controllers (2 DoFs for each arm). The differences between
the arm angular position and velocity and their respective paths are multiplied by gains and
then multiplied by negative one. The controllers output torques in Nm.

Figure 28: Arm Controller Block for Independent Controllers Model

48

A.2 Unified Controller

Figure 29 is very similar to Figure 24 except that it is the “Control and Actuation” block for
the model that uses the unified balancing/station keeping and arm controller. The difference
is the addition of arm sensing blocks and an arm path block in the lower left corner. The
“Actuation and Friction” block is identical to the block for the independent controllers shown
in Figure 26

9

Act X2

8

Act Y2

7

Sense Arm2

6

Sense Arm1

5

Sense Body

4

Sense X

3

Act X1

2

Act Y1

1

Sense Y

0

y direction

0

x direction

1

wait time

3

move time

1

distance

2

arm move
time

−C−

arm
dist

Y2 Act

Y1 Act

ap

av

Y Sensor

Y Dac

Angle

Rate
Continuous Angle

Y Continuous Angle

X2 Act

X1 Act

ap

av

X Sensor

X Dac

Angle

Rate
Continuous Angle

X Continuous Angle1

arm_dist

arm_move

arm_time

arm_xpath

arm_xvelpath

arm_ypath

arm_yvelpath

fcn

Path1

dist

move

dead

xdir

ydir

time

xpath

xvelpath

pitchpath

pitchratepath

ypath

yvelpath

rollpath

rollratepath

fcn

Path

.5

Gain1

.5

Gain
u

pitch

pitchrate

roll

rollrate

fcn

X Ball/Body

Y Ball/Body

X Arms

Y Arms

Y DAC

X DAC

Controller

Clock1

Clock

Body Sensor

ap

av

Arm2y

ap

av

Arm2x

ap

av

Arm1y

ap

av

Arm1x

Y Vel

X Vel

DAC Y

DAC X

Torque Y

Torque X

Actuation
and Friction

Figure 29: Ball Control and Actuation Block for Unified Controller Model

Figure 30 is a lower level SimMechanics block diagram of the “Controller Block” in Figure
29. It takes all of the sensor data from the rollers, body, and arms and inputs them into two

49

identical controllers - one in the x direction and one in the y direction. Moving from left to
right, each controller takes the differences between roller position, roller velocity, body angle
(either roll or pitch), body velocity, arm 1 angular position and velocity, and arm 2 angular
position and velocity and their respective paths (all measured in radians). These differences
are multiplied by gains and then added together and multiplied by negative one. There are
eight inputs to each controller. The controllers output torques (in Nm) to be applied to the
ball. The ball torque is first converted to a roller torque and then to a DAC input.

2

X DAC

1

Y DAC

−K−

Y Roller Torque
to DAC

Y Dac

Y Ball/Body
Cont

−K−

Y Ball Torque
to Roller Torque2

−K−

Y Ball Torque
to Roller Torque1

−K−

Y Ball Torque
to Roller Torque

Y Arm
Cont

−K−

X Roller Torque
to DAC

X Dac

X Ball/Body
Cont

−K−

X Ball Torque
to Roller Torque2

−K−

X Ball Torque
to Roller Torque1

−K−

X Ball Torque
to Roller Torque

X Arm
Cont

ydac

To Workspace6

xdac

To Workspace5

xrollcont

To Workspace4

yrollarmcont

To Workspace3

yrollcont

To Workspace2

xrollarmcont

To Workspace1

Subtract1

Subtract

24.3

P_YA2

24.3

P_YA1

24.3

P_XA2

24.3

P_XA1

−3.1

P_PosY

−3.1

P_PosX

1215.6

P_AngleY

−1215.6

P_AngleX

7.2

D_YA2

7.2

D_YA1

7.2

D_XA2

7.2

D_XA1

−2.5

D_PosY

−2.5

D_PosX

373.7

D_AngleY

−373.7

D_AngleX

4

Y Arms

3

X Arms

2

Y Ball/Body

1

X Ball/Body

Figure 30: Ball Controller Block for Unified Controller Model

Figure 31 is very similar to Figure 27 except that it is the “Arm Controller” block for the
model that uses the unified balancing/station keeping and arm controller. One difference
is the addition of arm sensing blocks and an arm path block in the lower left corner. The
other difference is the addition of four “gravity compensation” blocks (Matlab code inside).

50

These blocks use equation (20).

7

Sense Arm2

6

Sense Arm1

5

Sense Body

4

Sense X

3

Sense Y

2

Act
Arm2

1

Act
Arm1

0

y direction

torque

psi
gtorquefcn

x gravity
compensation3

torque

psi
gtorquefcn

x gravity
compensation2

torque

psi
gtorquefcn

x gravity
compensation1

0

x direction

1

wait time

3

move time

1

distance

2

arm move
time

0

arm
dist3

−C−

arm
dist2

0

arm
dist1

−C−

arm
dist

YVel

YPos

torque

psi
gtorquefcn

Y1 gravity
compensation

ap

av

Y Sensor

Angle

Rate
Continuous Angle

Y Continuous Angle

XVel

XPos

ap

av

X Sensor

Angle

Rate
Continuous Angle

X Continuous Angle1

arm1xpos

To Workspace9

rollrate

To Workspace8

pitchrate

To Workspace7

roll

To Workspace6

xpos

To Workspace5

pitch

To Workspace4

yvel

To Workspace3

time1

To Workspace22

time

To Workspace21

arm2ytorque

To Workspace20

ypos

To Workspace2

arm2xtorque

To Workspace19

arm1xtorque

To Workspace18

arm1ytorque

To Workspace17

arm2yvel

To Workspace16

arm1yvel

To Workspace15

arm2ypos

To Workspace14

arm1ypos

To Workspace13

arm2xvel

To Workspace12

arm1xvel

To Workspace11

arm2xpos

To Workspace10

xvel

To Workspace1

Saturation3

Saturation2

Saturation1

Saturation

Roll
Rate

Roll

Pitch
Rate

Pitch

arm1_xdist

arm1_ydist

arm2_xdist

arm2_ydist

arm_move

arm_time

arm1_xpath

arm1_xvelpath

arm2_xpath

arm2_xvelpath

arm1_ypath

arm1_yvelpath

arm2_ypath

arm2_yvelpath

fcn

Path1

dist

move

dead

xdir

ydir

time

xpath

xvelpath

pitchpath

pitchratepath

ypath

yvelpath

rollpath

rollratepath

fcn

Path Mechanical
Branching

Bar3

Mechanical
Branching

Bar2

0.5

Gain3

0.5

Gain2

0.5

Gain1

0.5

Gain

u

pitch

pitchrate

roll

rollrate

fcn

X Ball/Body

Y Ball/Body

X Arms

Y Arms

Y1 Torque

X1 Torque

X2 Torque

Y2 Torque

Controller

Clock1

Clock

Body Sensor

Arm2y
Torque

ap

av

Arm2y

Arm2x
Torque

ap

av

Arm2x

Arm2
YVel

Arm2
YPOS

Arm2
XVel

Arm2
XPos

Arm1y
torque

ap

av

Arm1y

Arm1x
Torque

ap

av

Arm1x

Arm1
YVel

Arm1
YPos

Arm1
XVel

Arm1
XPos

Act
Arm2y

Act
Arm2x

Act
Arm1y

Act
Arm1x

Figure 31: Arm Control and Actuation Block for Unified Controller Model

Figure 32 is a lower level SimMechanics block diagram of the “Controller Block” in Figure
31. There are four identical controllers - one for each DoF of each arm. Moving from left to
right, each controller takes the differences between roller position, roller velocity, body angle
(either roll or pitch), body velocity, the arm angular position of the DoF being controlled
and the arm angular velocity of the DoF being controlled, and their respective paths (all
measured in radians). These differences are multiplied by gains and then added together and
multiplied by negative one. There are six inputs to each controller. The controllers output
torques (in Nm) to be applied to the arms.

51

4

Y2 Torque

3

X2 Torque

2

X1 Torque

1

Y1 Torque

Y2 Dac1

Y1 Dac

Y Ball/Body
Cont

Y Arm 2
Cont

Y Arm 1
Cont

X2 Dac

X1 Dac

X Ball/Body
Cont

X Arm2
Cont

X Arm1
Cont

yarmarm2cont

To Workspace5

xarmarm2cont

To Workspace4

yarmarm1cont

To Workspace3

xarmarm1cont

To Workspace2

xarmcont

To Workspace19

yarmcont

To Workspace1

Subtract5

Subtract4

Subtract3

Subtract2

Subtract1

Subtract

20.8

P_YA2

20.8

P_YA1

20.8

P_XA2

20.8

P_XA1

−0.2

P_PosY

−0.2

P_PosX

37.6

P_AngleY

−37.6

P_AngleX

5.2

D_YA2

5.2

D_YA1

5.2

D_XA2

5.2

D_XA1

−0.1

D_PosY

−0.1

D_PosX

11.5

D_AngleY

−11.5

D_AngleX

4

Y Arms

3

X Arms

2

Y Ball/Body

1

X Ball/Body

Figure 32: Arm Controller Block for Unified Controller Model

52

