
Diploma Thesis

Pick and Place in a Minifactory
environment

Cornelius Niemeyer

Prof. Dr. Ralph L. Hollis
The Robotics Institute

Carnegie Mellon University (CMU)
Adviser

Prof. Dr. Bradley J. Nelson
Institute of Robotics and Intelligent Systems

Swiss Federal Institute of Technology Zurich (ETH)

2006-12

Preface i

Preface

I would like to thank Prof. Ralph Hollis for his guidance, his support and the

opportunity to write this thesis at the Microdynamic Systems Laboratory and

Prof. Bradley Nelson for his support and the opportunity to go overseas for the

work on this diploma thesis. Many thanks go to Christoph Bergler for his good

spirit, invaluable help and the good collaboration as my lab mate as well as Mark

Dzmura, Jacob Thomas, Mike Cozza, Jay Gowdy and Bertram Unger for their

contribution to the Minifactory project, their explanations and help.

Abstract ii

Abstract

This report describes the realization of vision and non-vision based pick and place

operations for cooperating low degree of freedom robotic agents in the Minifac-

tory environment developed at the Microdynamic Systems Laboratory (MSL) at

Carnegie Mellon University (CMU). The Minifactory is a flexible and agile as-

sembly system consisting of independent robotic modules. Procedures and robot

programs were developed to perform a precision assembly of a telescopic sight.

Furthermore, as an abstract model for general pick and place application needs,

micro scale spheres as model parts have been chosen. Vision based pick and place

of these spheres has been successfully demonstrated. For that purpose means to

connect and control a preexisting tweezer gripper were conceived. Vision process-

ing has been implemented in an extensible vision server application integrated

into the Minifactory software architecture. It is able to provide results to client

programs running on real or simulated robots. The recognition and locating of

the spheres in images grabbed from a video feed was realized using an ellipse

fitting algorithm.

Zusammenfassung iii

Zusammenfassung

Diese Arbeit beschreibt die Realisierung von “pick and place” Operationen für

kooperierende Roboter in der Minifactory. Die Minifactory ist eine flexible und

schnell anpassbare Montageanlage, die aus von einander unabhängigen Roboter-

modulen besteht. Sie wird am Microdynamic Systems Laboratory (MSL) an der

Carnegie Mellon University (CMU) entwickelt. Im Rahmen dieser Arbeit wur-

den Verfahren und Roboterprogramme für die Montage eines Zielfernrohrs erar-

beitet. Ausserdem wurden kleine Kugeln mit Durchmessern im Mikrobereich als

Modellbauteil für generelle “pick and place” Anwendungsfälle ausgewählt. Das

Aufnehmen und gezielte Ablegen dieser Kugeln unter Verwendung von Bilddaten

wurde erfolgreich demonstriert. In diesem Zusammenhang wurde die Anbindung

und Steuerung für einen schon bestehenden Greifmechanismus erarbeitet. Die

Bildverarbeitung wurde dabei in einer erweiterbaren, in die Softwarearchitek-

tur der Minifactory integrierten, Serverapplikation implementiert. Diese stellt

Bildverarbeitungsresultate Client-Programmen zur Verfügung, welche sowohl auf

realen als auch auf simulierten Robotern laufen können. Die Erkennung und

Lokalisierung der kleinen Kugeln auf aus einem Videosignal gewonnenen Bildern

wurde mit Hilfe eines “ellipse fitting”-Algorithmus realisiert.

Contents iv

Contents

Abstract ii

Zusammenfassung iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 The Agile Assembly Architecture 2

2.1 Minifactory . 2

2.2 Overhead Manipulator . 5

2.3 Courier . 6

2.4 Interface tool . 7

2.5 Programming Minifactory agents 7

2.6 Setting up a working system . 9

3 OSTI-Project: Assembly of a telescopic sight 9

3.1 Task analysis . 9

3.2 Hardware . 10

3.3 Factory programming . 12

3.4 Picking up . 14

3.5 Placing . 17

3.6 Screwing . 18

3.7 Experimental results . 19

4 Vision based pick and place 20

4.1 Task analysis . 20

4.2 Hardware . 21

4.3 End effector control . 23

4.4 Vision software module . 29

4.5 Experimental results . 33

Contents v

5 Summary and Contributions 39

5.1 Future Work . 39

References 41

A OSTI software modules 43

A.1 Pick up . 43

A.2 Place . 45

A.3 Screw . 48

B Vision 55

B.1 How to set up the vision system 55

B.2 Vision server source code . 56

B.3 Vision client example source code 72

B.4 How to extend the vision server 72

B.5 Hough transform algorithm testing code 73

C Vision Demo 76

C.1 .fac file . 76

C.2 Manipulator program . 78

C.3 Courier program . 82

D Tweezer gripper 85

D.1 Voice coil data . 85

D.2 Tweezer control card . 85

D.3 Changed manipulator code . 86

E Manipulator documentation 87

E.1 Modified valve manifold support 87

E.2 Pin description tables . 88

List of Tables vi

List of Tables

1 Agent actions in assembly operation 13

2 Manipulator action lists: pick up function 14

3 Manipulator behavior in successful pickup (top to bottom) 15

4 Manipulator action lists: place function 17

5 Manipulator behavior in successful place operation (top to bottom) 17

6 Manipulator actions in screwing operation 19

7 Voice coil currents . 26

8 OHM digital I/O IP408 bit/Pin mapping 88

List of Figures vii

List of Figures

1 T-shaped Minifactory at MSL . 3

2 Minifactory core module . 4

3 Manipulator agent with removed cover 5

4 Courier agent . 6

5 Designing a factory in the interface tool 7

6 Section of collimator housing with assembled lenses and retaining

rings . 10

7 OSTI end effector, ring and lens tools (sections) 11

8 OSTI assembly and parts couriers 12

9 Scene from virtual OSTI factory 13

10 Nest on parts courier with compliant rubber material 16

11 Modified ring tool . 16

12 Vision equipped end effector . 22

13 Tweezer gripper . 24

14 Tweezer control circuit . 25

15 Tweezer control card . 27

16 End effector and tweezer control card 27

17 Setting the ee dio value: flow of information in maniphead and

ohm exec programs . 28

18 Spheres and tweezer tips as seen by the end effector camera . . . 32

19 Results of sphere recognition with ellipse fitting 32

20 Result of sphere recognition with Hough transforms 33

21 GelPak with spheres on courier 34

22 Virtual sphere pick and place factory 35

23 Search pattern performed when looking for sphere 36

24 Sphere sticking to tweezer when placing 37

25 Egg shaped spheres . 37

26 Pick and place of a sphere . 38

27 Schematic tweezer card pin mapping 85

1 Introduction 1

1 Introduction

Today’s high tech industries are confronted with ever shorter product life cycles,

rapidly changing market demands, a drive towards more and more miniaturiza-

tion and integration as well as the demand for more product variants and search

for individuality. This concerns fashionable articles and gadgets as well as e.g.

MEMS or optoelectronic devices. The Agile Assembly Architecture (AAA) phi-

losophy developed at the Microdynamic Systems Laboratory (MSL) at Carnegie

Mellon University (CMU) and its physical instantiation in the robotic Minifactory

aim to meet these requirements.

The Minifactory undergoes a constant process of development. Two projects

were carried out to enable pick and place operations which are an integral part

of a product assembly. The first task was to implement the precision assembly of

a telescopic sight carried out by multiple cooperating robotic agents. Lenses of

different sizes and shapes had to be assembled in a collimator housing and then

be fixed in place with screwed in retaining rings. Several people worked on the

realization of this task. This report covers the author’s contribution, namely the

implementation of programs for robotic agents and implemented modifications

on project associated hardware.

The second task was to perform vision based pick and place of small spheres with

a diameter of 300 µm using two cooperating robots. This included finding means

to connect and control a previously designed tweezer gripping mechanism. Fur-

thermore image processing to locate spheres had to be implemented and a place

for the image processing unit in the complex Minifactory software architecture

needed to be determined.

This report is structured in three main chapters. An introduction to the

Minifactory environment is given in Chapter 2. The realization of the telescopic

sight assembly is presented in Chapter 3. The vision based pick and place of

spheres is discussed in Chapter 4. Important source code and technical data can

be found in the appendix. Further material is included on an enclosed DVD.

2 The Agile Assembly Architecture 2

2 The Agile Assembly Architecture

The Agile Assembly Architecture (AAA) [6], [15] is a philosophy conceived at the

Microdynamic Systems Laboratory (MSL) at Carnegie Mellon University (CMU)

to meet the modern day requirements of the assembly part of product manufac-

turing. It aims not only to be flexible in terms of being capable to cope with

variability in the manufacturing process but also for agility, which is the ability

to adapt to a rapidly changing product market. Thus its goals are to drastically

reduce the assembly system’s design and changeover times as well as to enable

its geographically distributed design and rapid deployment. An AAA assembly

system consists of tightly integrated and computationally independent robotic

modules knowing about their own capabilities and capable of flexible coopera-

tion with their peers [12], [8]. The modules can provide models of their geometry

as well as their behavior for simulation and monitoring in a unified interface

tool [3]. Assembly systems can be designed, programmed [4] and tested in a

simulated factory environment using the interface tool and working with actual

module specifications loaded remotely over the internet. Standardized protocols

and procedures as well as structured robotic agent autonomy simplify the design

and programming task. Once ordered modules have arrived and have been as-

sembled, the modules ability to self calibrate and explore their environment is

exploited to enable a smooth transition from simulated to real assembly.

2.1 Minifactory

The Minifactory developed at MSL is a physical Agile Assembly Architecture

instantiation as a tabletop factory [11],[5]. It is shown in Figure 1. It combines

low degree of freedom (DOF) robotic modules, referred to as agents, to perform

a cooperative task consisting of integrated part transportation and up to 5 DOF

assembly. The use of cooperative robots with two or three degrees of freedom

enables independent high precision movements in any direction as opposed to e.g.

the precision loss in robots with long kinematic chains such as a SCARA robot.

Low-DOF robots can be designed with low masses and thus allow higher accel-

erations and speeds to reduce operation times. Furthermore the use of multiple

cooperating agents allows parallelization and pipelining of assembly processes.

2.1 Minifactory 3

Figure 1: T-shaped Minifactory at MSL.

A Minifactory consists of different modules such as base frames, base units,

platen tiles, bridges and robotic agents that enable a multitude of different con-

figurations and swift set-up. An aluminum profile base frame forms the structural

support of the factory comprising the so called base unit, a service module that

can supply connected agents with power, network connection, pressured air and

vacuum. At the top of the base frame a platen tile is mounted that represents the

factory floor (see Figure 2). A platen consists of a grid of ferromagnetic posts on

a 1mm pitch, surrounded by epoxy to obtain a flat surface. Polyethylene curbs

are attached at the platen edges. Adjustable structural bridges can be clamped

to the base frame to support robotic agents mounted above the platen. Further

agents can be attached to the sides of the base frame. The two types of robotic

agents used in this project are the overhead manipulator and courier agents. Both

will be presented in detail in the following sections. A global 100Mbit network

using standard IP protocols and a local 100Mbit network, specially adapted for

low latency and real-time capabilities referred to as AAA-Net [9] enable high

performance agent communication.

2.1 Minifactory 4

Figure 2: Minifactory core module.

2.2 Overhead Manipulator 5

Figure 3: Manipulator agent with removed cover.

2.2 Overhead Manipulator

The overhead manipulator (OHM) agent, shown in Figure 3 is a two DOF robot

able to move vertically along a Z axis and to rotate in θ around Z. Manipulators

are clamped to bridges above the platen performing their task in a working area

in between them and the platen. Figure 1 shows mounted manipulators. The

range of motion in Z is about 150 mm with a resolution of 5 µm and 570 ◦ in θ

with a resolution of 0.0002 ◦ (1σ) [1]. Different end effectors can be connected to

an electrical and pneumatic interface, providing pressured air and vacuum as well

as signal and video transmission to resp. from the end effector. The manipulators

computational unit has recently been updated to an embedded Intel Celeron M

system running the QNX 6.3 real time operating system. It is equipped with

an analog frame grabber card for vision processing, an Acromag APC-8620 PCI

carrier card with Industry Pack (IP) modules that interface to the actuators and

sensors and two network connections. Files are stored on a 1 Gb compact flash

memory card. All mechanics, electronics and computing hardware are tightly

integrated in the so called brainbox making the manipulator easy to handle and

move around. The manipulator design is explained in detail in [1]

2.3 Courier 6

(a) Courier agent on platen (b) Bottom side of
courier agent

Figure 4: Courier agent.

2.3 Courier

Courier agents as shown in Figure 4 glide in two DOF on air bearings at an

altitude of 10− 15 µm [8] over the platen factory floor. They can transport

products as well as cooperate with the manipulator in an assembly operation.

To move in X and Y the courier is equipped with four planar stepper motors

exploiting the Sawyer principle arranged as shown in Figure 4 b). The grid of

ferromagnetic teeth in the platen provides the electromagnetic reaction forces for

the courier motors. Position references extracted by a platen sensor enable closed

loop control at a position resolution of 0.2 µm (1σ) at a speed of 1.5 m/s [13].

Furthermore the courier is equipped with an optical coordination sensor able to

detect and measure the relative distance to LED beacons attached to manipulator

end effectors with a resolution of 0.15 µm (1σ) [10] at a bandwidth of 100Hz. The

courier is connected to its brainbox by a tether whose length constitutes the only

limit of its area of operation on the platen. The brainbox contains all electrical

and computing hardware and can be clamped to the side of the Minifactory base

frame. The computing hardware is the same as for the manipulator with the

exception of the frame grabber. Task specific appliances such as e.g. a fixture to

safely transport products can be fixed to the courier’s upper side.

2.4 Interface tool 7

2.4 Interface tool

Minifactory’s core software is the interface tool described in detail in [3]. Using

the interface tool one can design an assembly system in a 3D virtual factory

environment as shown in Figure 5. Agent programs and assembly procedures

can be elaborated in an iterative process by testing them in simulation. Once

connected to real agents, the interface tool can download the programs to them

and launch the assembly operations. While the assembly is executed the agents

continuously send status information to the interface tool enabling it to visualize

what is happening. Thus the interface tool also serves as a monitoring device

when the real factory is running. Furthermore the interface tool is capable to

combine simulation and monitoring by e.g. simulating some agents that are not

connected and monitoring others that are actually running their programs.

Figure 5: Designing a factory in the interface tool.

2.5 Programming Minifactory agents

There is no central program or control unit running Minifactory. Instead agent

based distributed programming is used [16], [4]. Agents run their own program

and communicate directly with other agents, providing information about them-

selves (as e.g. their current position, direction and speed) as well as sending in-

structions and negotiating actions in order to perform coordinated movements

2.5 Programming Minifactory agents 8

and complete cooperative tasks. High level programming is done in Python

scripts defining the agent’s behavior in different factory operations and at dis-

crete events. Factory wide standardized procedures involving multiple agents are

also implemented on the Python level. The parameterization, sequencing and ex-

ecution of low level control strategies to e.g. perform movements is implemented

in low level C and C++ programs. Thus two C/C++ programs run on every

agent. One is a head program running and executing the Python script in a

special thread while at the same time handling the tasks of communicating with

other agents. The second is a real time executive handling everything hardware

associated such as handling sensor data and controlling movement in real time.

Minifactory agents use the hybrid control model elaborated in [14] to adaptively

determine the order of execution of different low level control strategies called

controllers. For the manipulator agent there are e.g. the following important

control strategies:

MoveTo Move the end effector to a specific position

StopAt Move the end effector to a specific position close by with very high

precision.

GraspAt Move the end effector to a specific position such that an item can be

grasped by the end effector

Controllers are associated with a target position and a Boolean function called

predicate. A predicate can depend on the agent’s position or on other different

sensor values. For instance a predicate can be defined to return true when the

manipulators position on the Z axis is in the region of -10 to -50 and otherwise

false. Controllers are inserted at a position in an actionlist, a generated list

of controllers. The real time executive handles this actionlist and periodically

scans it beginning at the top. It evaluates the predicate functions and the first

controller in the list whose predicate is true will be executed. Thus a controller

in the list is executed as long as it’s predicate remains true and no predicate of

a controller higher in the list returns true. The use of the hybrid control method

to program Minifactory agents is at times complex and unintuitive. However if

one makes proper use of its capabilities very powerful and adaptive cooperative

agent behaviors can result.

2.6 Setting up a working system 9

2.6 Setting up a working system

Prior to the start of this thesis an effort to update and refit the Minifactory agents

was begun. Among other things the computational hardware in all Minifactory

agents was changed to embedded Intel Celeron M systems and the operating

system was switched from LynxOS to QNX which required the porting of all agent

software. The interface tool previously running on a Silicon Graphics machine

was moved and ported to a new X86 PC computer running on Linux. These

modifications took however more time than planned and were not completely

finished by the start of this project. Thus a significant amount of time had

to be spent to solve several problems, remove bugs and to set up at least a

partly working system. Some issues could not be dealt with to the end although

a lot of progress was made. For the course of this thesis the manipulators had

several hardware problems including e.g. Z axis position errors as large as 1.5 mm.

Furthermore the courier platen position sensor as well as the optical coordination

sensor were not yet working again. Thus only open loop dead reckoning courier

movements and no automated factory calibration could be performed.

3 OSTI-Project: Assembly of a telescopic sight

3.1 Task analysis

The idea behind this project is to reassure and demonstrate the refitted Minifac-

tory system capabilities. The overall task is to implement a precision assembly

of a telescopic sight from Optical Systems Technology, Inc., Kittaning, PA, USA

(OSTI). Several lenses of different thicknesses and diameters have to be set and

glued into a tight-fitting collimator housing. Each lens has to be secured by

a retaining ring which is screwed into the housing (see Figure 6). As the glue

dispensing agent was still being developed and not operational only a “dry” as-

sembly was attempted. The overall task was split up in different smaller entities

such as

1. Mechanical design of an end-effector and tools to pick up and screw in resp.

put down items.

2. Generating a virtual Factory simulating and visualizing the assembly pro-

3.2 Hardware 10

cess

3. Programming the actual pick, place and screwing operations to be per-

formed by the factory’s agents

4. Merging all of the above to a working assembly

Several people worked on this project. The author’s contribution to task number

4 and the solution to his assigned subtask number 3 will be presented in the

following sections.

Figure 6: Section of collimator housing with assembled lenses and retaining rings.

3.2 Hardware

3.2.1 End effector and tools

As the items to be assembled have different geometric proportions a special tool

was designed for each lens and retaining ring. The tools bottom side is adapted to

mate with the picked up and placed item whereas the top is standardized and can

be attached to a single pick and place end effector. The designs of the different

tools and the end effector were provided and are described in detail in [7]. The

end effector is shown in Figure 7 (a). It has two pneumatic channels which the

manipulator can connect to pressured air or vacuum. If a tool is mated with the

bottom side of the end effector a small chamber is created. The centered channel

3.2 Hardware 11

leads vacuum or air to that chamber and thus sucks at the tool to keep it in place

or pushes it away. The second channel is continued through the tool to the part.

In the case of a lens tool as shown in Figure 7 (c) it leads to a chamber formed

by the tool and the lens. Using the same principle as before, the lens can be hold

in place or pushed away. In the case of a ring tool, as shown in Figure 7 (b),

the second channel leads to a ring of very small holes at the connecting surface

between ring and ring tool. Thus the sucking vacuum or the air can be applied

to the ring. Furthermore the ring tool has two small metal bars fitting into two

small slots at the top of each ring. They enable the tools to transmit torque to

the rings and thus the screwing of the rings into the collimator housing.

Figure 7: OSTI end effector, ring and lens tools (sections).

3.2.2 Couriers

The collimator housing in which all parts have to be assembled is mounted on

the assembly courier and the parts are stored in nests on a pallet fixed to the

parts courier as shown in Figure 8. The tools are placed directly on top of the

parts so that the manipulator can pick up both at the same time.

3.3 Factory programming 12

(a) Assembly courier (b) Parts courier

Figure 8: OSTI assembly and parts couriers.

3.3 Factory programming

The overall assembly process can be decomposed in similar subunits for each part

to assemble. Each unit consists of the pick up of the part and the corresponding

tool from the parts courier, the assembly operation on the assembly courier and

the deposing of the tool on the parts courier. Since there is an individual tool for

every part that is assembled, the used tool is not needed anymore. It is replaced

in the nest where the now assembled part was previously stored (see Figure 8

(b)).

In order to perform an interaction between a courier and the manipulator

such as placing an item in a defined position on a courier or picking up an

item, the courier and the manipulator have to meet in such a configuration that

the (target) position of the item on the courier lies directly beneath the Z axis

of the manipulator as shown in Figure 9. This is achieved by using provided

coordination functions. The courier initiates a so called RendezVous, announcing

the future cooperation. The manipulator accepts the RendezVous if it is currently

unoccupied and a “connection” between the two agents is established. Using the

command coordinateTo the courier “enslaves” the manipulator and tells him to

cooperate in a coordinated move towards the desired relative position of the

two. Once in position the manipulator can perform a pickup, place or screwing

operation. In order to simplify the programming, these operations have been

implemented in such a way that no further courier movements are needed until

the operation is complete. The different operations have been implemented in

individual Python functions running on the manipulator agent. They will be

3.3 Factory programming 13

explained in detail in the following sections. The sequence of actions performed

by the courier and manipulator agents during the assembly of a lens or a ring is

listed in a schematic way in Table 1.

Figure 9: Scene from virtual OSTI factory.

Table 1: Agent actions in assembly operation.
Parts courier (C2) Manipulator Assembly courier (C1)
initiate RendezVous initiate RendezVous

accept Rendezvous from C2

move in position move in position

perform pick up

move away

finish RendezVous finish RendezVous

accept RendezVous from C1

move in position move in position

perform place/screwing

move away

finish RendezVous finish RendezVous

initiate RendezVous

accept RendezVous from C2

move in position move in position

place back tool

move away

finish RendezVous finish RendezVous

3.4 Picking up 14

3.4 Picking up

3.4.1 Pick up software module

The purpose of this function is to make the manipulator end effector move to a

specified Z coordinate target Z and pick up a tool or a part and a tool. The lifting

is done by applying vacuum to the pneumatic channels in question, thus sucking

at the tool and part. The function submits different controllers with different

predicates (see Section 2.5) to the manipulator’s action list. Since the execution

of controllers in the action list is not linear but condition based, the source code

looks rather different from the actual sequence of actions resp. movements of

the manipulator which makes everything rather complex. To simplify things the

generated action list and the resulting actions/movements of the manipulator will

be presented in the following. The corresponding Python code can be found in

Appendix A.1.

Table 2: Manipulator action lists: pick up function
ID Description Predicate Channel Flags
3 StopAt target Z + offset p ≤ graspPressure sucking air “Got part”
4 Move to target Z + offset p ≤ graspPressure sucking air
1 GraspAt target Z at target Z sucking air
2 Move to target Z sucking air

The manipulator agent’s action list for the during the execution of the pick

up function is shown in Table 2. For timing reasons the order of insertion of the

different controllers, which is represented by their ID, is different from their order

in the action list. From bottom to top the different controllers have predicates

that are only fulfilled if the previous execution of a controller lower in the list

has brought the desired results. For instance the predicate condition for the

controller with the ID 4, moving the end effector upwards from target Z about

a given Offset, is that the air pressure on the pneumatic lines in question has

dropped below 30 kPa. This condition is only met if the controller one down in

the list with the ID 1 has successfully made the end effector mate with the tool

such that the connection is sealing enough to establish a low enough pressure.

Thus the different controllers in the action list are executed from bottom to top,

as long as everything goes well, going down in the list again when it does not.

The behavior of the manipulator for the case where everything goes as desired is

3.4 Picking up 15

listed in Table 3. The function returns if the ”Got Part” flag is emitted or when

a time limit is reached to avoid infinite unsuccessful trying.

Table 3: Manipulator behavior in successful pickup (top to bottom).
Performed action Status of pneumatic channel
move to target Z (ID 2) starting to suck air

grasp item at target Z (ID 1) sucking air

move to target Z + offset (ID 4) close to vacuum

stop at target Z + offset (ID 3) vacuum

3.4.2 Hardware modifications

In order to pick a tool and lens up successfully, the connection between the end

effector and the tool must be sealing well enough to generate a low enough air

pressure in the pneumatic channel. For that seal to be established, the upper

face of the tool and the lower face of the end effector (see Figure 7 in Section

3.2.1) must be coplanar. The plane of the face on the tool is mainly defined

by the plane of the Minifactory platen with added influences of manufacturing

inaccuracies resp. tolerances on parts of the courier, the parts palette and the

tool itself. The plane on the end effector is mainly defined by the mounting

of the whole manipulator to the mounting bridges above the platen with added

influences of manufacturing inaccuracies resp. tolerances of the mounting bridge,

the manipulator and the end effector itself. This number of different influences is

so great that assuring the right tolerances on all different parts would be costly

and intricate. Therefore it was decided to integrate an element of compliance

which lets the tool and/or end effector move in the correct respective position.

The compliant element could be at the link of the palette and the courier, at

the link of courier and part and at the link of end effector and manipulator.

For reasons of simplicity and the low alteration effort it was chosen to put some

compliant material between the parts and the palette in the nests. Test series of

different foams and rubber types returned a ring of ordinary rubber glued into

the nests as best solution as shown in Figure 10. In addition to that the tightly

designed nests had to be widened to give the part and tool room to move a little

bit.

Picking up the different retaining rings by sucking them onto the tool could

not be achieved after several alternations to the ring tools, such as e.g. widening

3.4 Picking up 16

Figure 10: Nest on parts courier with compliant rubber material.

the small air holes on the contact surface of the tool. The contact surface of the

ring proved to be too small and not plane enough to generate a sealed connection

of tool and ring. In addition to that, the sucking air flow slowed down due to the

small diameters of the holes. As a result the force that could be generated on the

ring was not large enough to lift it up. The solution developed is based on holding

the ring in place on the tool by friction. The diameter of the lower part of the

tool shown in Figure 11 which mates with the inner walls of the ring as is slightly

increased to tighten the fit such that the ring stays on. The ring is mounted to

the ring tool before placing them in the nest on the parts courier. When picking

up the ring tool the ring stays on and after one full turn of screwing the thread

holds the ring in place on the collimator housing such that it is stripped off when

the end effector and tool are lifted up.

Figure 11: Modified ring tool.

3.5 Placing 17

3.5 Placing

3.5.1 Place software module

The purpose of this function is to make the manipulator end effector move to a

specified Z coordinate target Z and drop a part or a tool releasing the vacuum

in the corresponding pneumatic channel of the end effector (see Section 3.2.1).

To overcome any residual adhesion of the item on the end effector additional

compressed air can be blown through the channels. As in the previous section the

different states of the action list and the actions/movements of the manipulator

will be presented in the following. The corresponding Python code can be found

in Appendix A.2.

Table 4: Manipulator action lists: drop function
ID Description Predicate Channel Flags
5 StopAt target Z “Start dropped” emitted blow air
2 StopAt target Z at target Z and p > 90kPa air off
1 StopAt target Z at target Z and p ≤ 90kPa air on “Start dropped”
3 Move to target Z vacuum
4 Move close to target Z vacuum

Table 5: Manipulator behavior in successful place (top to bottom).
Performed action Status of pneumatic channel
move closer to target Z (ID 4) vacuum

move very close to target Z (ID 3) vacuum

stop at target Z (ID 2 and 1) release vacuum

stay at target Z (ID 5) blowing air

flush action list

assure that item has dropped

Table 4 shows the action list of the manipulator during the main part of

the place function. Due to different timing and execution condition issues, the

order of the controllers in the list can not be the same as the sequence of their

insertion which is represented by their ID. As described in Section 2.5, when the

executor moves through the list, it executes the first controller action with fulfilled

predicates. What results is a behavior as listed in Table 5 . The manipulator

approaches the target Z position, first quickly, then cautiously (controllers with

IDs 4 and 3). Once arrived it blows a little bit of compressed air through the

3.6 Screwing 18

pneumatic channel to release the vacuum (controller with ID 1) until the obtained

pressure is bigger then 90 kPa. Then the controller with the ID 2 is executed and

temporarily stops the insertion of air into the pneumatic channel. If it has been

specified when evoking the function, controller 5 is executed and blows a further

and, because of the lengthier time, stronger stream of compressed air through the

channel to blow off a potentially sticking item. After flushing the actionlist, the

drop of the part or tool in question is then confirmed by measuring the current

pressure in the pneumatic channel. If it is not close to atmospheric pressure the

item is assumed not to have dropped and the manipulator will stop. Otherwise

it will move up again.

3.6 Screwing

3.6.1 Screwing software module

This manipulator function is used to screw retaining rings into the collimator

housing. The amount of total turns, the delta theta of the first turn and the

pitch of the thread are given as notable parameters. The whole ring screwing can

be decomposed in three phases:

1. First turn to catch the thread (usually about 2 Π)

2. Perform turns about Π

3. Turn the rest ≤ Π till the ring is screwed in tight.

The individual movements performed by the manipulator are listed in Table 6.

To screw, the end effector with the picked up tool is moved down and connects

to the ring. The end effector is then turned and transmits the momentum to the

ring via the small metal bar fixed to the tool. Due to the applied momentum

a tension between tool and ring arises causing a lot of friction at their contact

surface. Before moving up the tool to turn back and screw again this tension has

to be eased by turning the ring for some degrees in the opposite direction. If this

is not done, the arising friction causes the tool to keep sticking on the ring and

the end effector to loose it.

Due to the repetitive nature of the screwing motions, after each of the move-

ment controllers inserted into the action list another controller is inserted. It

3.7 Experimental results 19

becomes active when the end effector reaches its intermediate goal position and

emits a signal. Thus the correct execution of each movement can be assured

without any interference by other controllers submitted to the action list at an

earlier time. The action list itself becomes quite complex and varies. Therefore

it is not presented in detail. The corresponding Python code can be found in

Appendix A.3.

Table 6: Manipulator actions in screwing operation.
Performed action

move closer to target Z

move very close to target Z

stop at target Z

turn about delta theta

turn back a little

move up

do n times:

turn back

go down

turn about Π and move down about the pitch/2

turn back a little

go up

turn back

go down

turn till ring is stuck

move up

3.7 Experimental results

The functions for the individual operations (picking up tools and parts, placing

parts or tools and screwing in retaining rings) have been developed in several

iterations of programming and extensive testing with a non moving courier. Un-

der the condition that the relative position of the courier and the manipulator

4 Vision based pick and place 20

Z axis is exact enough (about 0.1 mm of maximum position error for picking up

and placing and 0.05 mm maximum position error for screwing) they have shown

to perform robustly.

In general these requirements would be easily met by the Minifactory agents.

However due to the refitting and modernizing efforts the sensors measuring the

position of the courier on the platen and the relative position of courier and

manipulator agents as well as vision were not working by the time of the end of

the OSTI project. Small position errors occurred when moving couriers around

due to the pull of the courier’s tether. With careful handling of the tethers,

initializing couriers at known positions and using a dead reckoning approach the

relative positions could be made accurate enough for picking and placing one item

but not for screwing. In addition to that, the fixture of the manipulator agent

at the bridge over the platen proved to have some slackness. The manipulator

would be slightly tilted towards any side when a certain force was exerted along

the Z axis, occurring e.g. occasionally when picking up parts. This would result

in position errors larger then 1 mm at the end effector. A complete assembly

could therefore not be performed.

4 Vision based pick and place

4.1 Task analysis

The goal of this project is to pick and place small nylon spheres of a diameter

varying around 300 µm using computer vision. If that succeeds pick and place of

even smaller metal spheres of a diameter varying around 40 µm should be tried.

An end effector including a camera, microscope, light source and an attached

tweezer gripper has already been designed. The task can be divided into several

subtasks:

Vision hardware The analog camera feed has to be led to a frame grabber

in order to digitalize it and use it in image processing algorithms. In the

previous Minifactory setup an Imagenation PX610 frame grabber was used.

However there is no driver for this card for the QNX 6.3 operating system

at this point.

OpenCV It is intended to use the Intel OpenCV open source vision library for

4.2 Hardware 21

image processing. It will have to be ported to the QNX operating system

since there is no available distribution at this point.

Tweezer end effector A tweezer gripping mechanism has been designed to be

mounted on the current end effector. The design has to be evaluated and

made ready for use in this application.

Gripper control So far there is no solution to control the tweezer gripper and it

is not known how to send analog or digital signals from the manipulator box

to the end effector for that purpose. A control circuit has to be designed

to transform these signals to an adequate form for the tweezer actuator.

Furthermore the tweezer control has to be implemented in the Minifactory

software.

Image processing The image processing has to be integrated in the Minifactory

software architecture and the generation of the information for the specific

task at hand has to be implemented.

Agent programming Programs running on the Minifactory agents, in this case

on a manipulator picking and placing and a courier carrying the spheres

have to be elaborated.

Interface tool factory A virtual representation of the pick and place factory

that runs in the interface tool has to be created. Thus the execution of

coordinated agent movements and the pick and place of the spheres can be

performed in simulation and in reality.

The solution to these different subunits will be presented in the following sections.

4.2 Hardware

4.2.1 Vision hardware

The vision capable end effector designed prior to this project is shown in Figure

12. The mechanical, pneumatic and electrical interface connector and a vision

unit are mounted on a “box” of anodized aluminum. The vision unit contains a

Hitachi KP-M22 monochrome camera and a white LED light source. Different

2X, 5X and 10X magnifying Mitutoyo objectives can be used. Thus the manipu-

lator has its own microscope. The objectives working distance of 34 mm permits

4.2 Hardware 22

the use of a variety of grippers which in turn are mounted on the underside of

the end effector.

Figure 12: Vision equipped end effector.

In the previous Minifactory setup the feed from the camera is digitalized by

an Imagenation PX610 frame grabber card. Further investigation turned up an

unofficial driver for this card for QNX4 but not for QNX6.31. As there are major

differences for resource managers and device drivers for the two operating system

versions the amount of work needed to rewrite the drivers was judged too great.

Instead it was decided to use a newer card model, the Imagenation PXC200AL

which comes with the needed device drivers for QNX. Unfortunately the new

card proved to have some erroneous behavior when combined with the Advantech

PCA-6105P5 Backplane and PCI6880F CPU card. It would not work at all in the

designated PCI slot number 1. Despite efforts from Advantech the source of the

problem could not be found. As the Manipulator Agent is very tightly build there

is no mean to plug the PCX200AL in PCI slot number 3, the only other available

one, without slight modifications. These modifications were carried out on a part

supporting the valve manifold (shown in Figure 3 in Section 2.2) shifting the block

of vacuum and pressured air valves about 2.5 mm to the right. A drawing of the

1Arnauld Delmas, CEA - CEREM, French atomic energy commission

4.3 End effector control 23

modified part can be found in Appendix E.1. While at fist the card seemed to

perform well, it was not discovered until very late in the course of the project that,

when the card is plugged in, the manipulator can not be properly actuated. The

manipulator produces a velocity limit exceeded error, which means that it is trying

to suddenly accelerate strongly and is thereby violating the velocity limits set in

the software. However the commands send to the APC-8620 carrier card over the

PCI bus are correct. Due to the limited time available for this project the source

of this problem could not be exhaustively investigated and the problem could not

be solved. However a “work around” was developed enabling the demonstration

of the elaborated pick and place operations. It will be described in the Section

4.5.1

4.2.2 Tweezer gripper

The gripper provided for this pick and place application consists of a standard

non-magnetic tweezer and is shown in Figure 13. Its legs are opened and closed

symmetrically using a H2W technologies NCC05-11-1X frictionless voice coil ac-

tuator (see Appendix D.1). The voice coil and the corresponding magnet are

mounted on opposite sides of the tweezer with a small counterbalance attached

to the coil to equal the higher weight of the magnet. The tweezer is mounted in

a clamp enabling rotational adjustment, which is in turn attached to a Newport

DS25 XY stage. Thus the tips of the tweezer can be moved in XYZ. The whole

gripper mechanism is attached to the bottom of the end effector with the tips

of the tweezers below the objective lens. The position of the tips can then be

adjusted to move them in focus into the area seen by the camera.

4.3 End effector control

The manipulator uses an Acromag APC-8620 PCI carrier card with four Industry-

Pack (IP) modules for the input and output of sensor values, actuator commands

and other signals. As presented in detail in [1] only lines for digital I/O sig-

nals, analog inputs and the video input are run down to the end effector con-

nector. The two analog outputs generated by the DACs on a SBS Technologies

IP-PRECISION module are used to control the Z and θ axis motors. This means

that only the output signals on the digital I/O lines can be used for the gripper

4.3 End effector control 24

Figure 13: Tweezer gripper.

control. Of six digital I/O lines in total at the end effector, four are available for

this task since two are reserved to access an EEPROM device on future versions

of this end effector. The digital I/O signals are generated resp. read on a Acro-

mag IP408 high voltage digital I/O module. As no detailed documentation was

available for these digital I/O signal lines, reverse engineering of the manipula-

tor cable routing provided the pin numbers on the connectors and cables. The

augmented pin description tables can be found in Appendix E.2.

The forces generated in the voice coil actuator and therefore the tweezer

displacement are controlled by the input coil current. As experiments showed a

high repeatability and task - sufficient accuracy of the tweezer movements it was

concluded that an implementation of closed loop control would not be necessary.

The needed forces for the gripping task are varying. While the gripping force

exerted on a sufficiently rigid gripped object is a linear function of the current,

the change of the distance between the two tips before the closure of the tweezer

is not linear due to the slightly non linear spring behavior of the tweezers legs. In

addition to that, the location of the mounting spots of the voice coil and magnet

on the tweezer greatly influences the needed force to close the tweezer as well

as the distance between the tips in the zero position when no current at all is

applied. The current needed to barely close the tweezer can vary from 25 to

4.3 End effector control 25

63 mA at 12 V.

To transform the 4 bit signal into 16 different currents the control circuit

shown in Fig. 14 was designed. The four digital I/O lines are pulled up to 5 V

using an LM7805 voltage regulator. The resistors R1 to R4 limit the current when

the lines are shorted to ground in the I/O module on the carrier card, which

happens when ‘sending’ a 0. The central unit of the circuit is the LMD18245

DMOS full-bridge motor driver (see Appendix D.2). It includes a 4 bit DAC

controlling an output current via a fixed off-time chopper technique. The gain

for the internal current amplifier defines the range of the output current. It can be

set using different resistor values for the resistor Rs at the CS OUT pin (labeled

R6 in Fig 14). Rs is calculated using the formula 4.1 which has been obtained

from the data sheet.

Rs =
(VDACRef ∗ DIO

16
)

((250 ∗ 10−6) ∗ Iout)
(4.1)

Figure 14: Tweezer control circuit.

An initial calculation returned a value of 280 kΩ for Rs. However measure-

ments showed that the obtained currents were smaller by a constant offset then

the expected value. The offset corresponds to two steps in the values 0-15 written

on the digital I/O lines. This seems to be caused by the very low current range

at which the motor driver is operating. Increasing the current range and letting

4.3 End effector control 26

most of the current flow through a resistor parallel to the voice coil would how-

ever return too imprecise results, since the currents would change considerably

with the change of resistances due to thermal effects. Since only a fraction of the

whole 16 digital I/O settings can be used in any case due to too small or too high

currents depending on how the voice coil is mounted on the tweezer and since

the behavior of the circuit is stable otherwise, it was chosen to accept the loss of

two current settings. The new value determined for Rs taking this into account

is 240 kΩ. The resulting currents are listed in Table 7.

Table 7: Voice coil currents.
DIO value 15 14 13 12 11 10 9 8
Current [mA] 69.1 64.0 58.8 53.6 48.3 43.1 37.9 32.7

DIO value 7 6 5 4 3 2 1 0
Current [mA] 27.5 22.3 17.1 11.9 6.7 0 0 0

A reference voltage of 5V for the DAC is connected to pin 14. The off-time

for the current chopper is set to 36.3 µs via a parallel resistor capacitor network

connected to RC. This proved to be well fast enough to be entirely damped in the

voice coil and thus the on and off switching of the current provokes no oscillation

in the tweezer. As there is no more output line available at the end effector the

BRAKE pin is permanently connected to ground. The flow of current across the

voice coil can be disabled by sending “0000” on the digital I/O lines. Since there

is no need for any change of current direction the DIRECTION pin is connected

to ground as well. The whole circuit is supplied by a 12 V source available at the

end effector. The supply is bypassed by the aluminum electrolytic capacitor C3

(22 µF) and the high frequency ceramic capacitor C4 (1 µF) to protect the circuit

and minimize effects of normal operation on the supply rail. The different circuit

components were soldered on a small card as shown in Figure 15 that fits inside

the lower aluminum box of the end effector (see Figure 16). The card has two

four pin connectors, one for the four digital I/O’s and one for VCC, ground and

the two outputs going to the tweezer. As shown in Figure 16 (a) the connected

cables are directly soldered to the end effector connector. The Pin mapping for

the card can be found in Appendix E.2.

To be able to make efficient and manageable manipulator programs one should

be able to set the values on the four digital I/O lines from the Python script level

just as e.g. when commanding to open a valve and send pressured air down to the

4.3 End effector control 27

Figure 15: Tweezer control card.

(a) Open end effector with connected
tweezer control card

(b) End effector with mounted
tweezer control card

Figure 16: End effector and tweezer control card.

end effector. In fact the control of these vales is effectuated using other digital

I/O lines originating in the same IP408 module on the APC-8620 carrier card.

Thus the propagation of the command to set these lines to a specific value has

been taken as example for the end effector digital I/Os. The general architecture

of the software running on the manipulator and the flow of information resp.

commands within it is very complex and unfortunately mostly undocumented.

What seems to be happening is illustrated in Figure 17. The maniphead program

launches a scripting thread executing the manipulator Python program. Within

the manipulator Python environment the global variables ee dio1 to ee dio4 have

been defined. The bits to be sent on the digital I/O lines have to be set here. For

convenience the function setDIO(self, value) has been included in the manip-

4.3 End effector control 28

Figure 17: Setting the ee dio value: flow of information in maniphead and
ohm exec programs.

4.4 Vision software module 29

ulator program class DemoMainpProgram.py. When handed a value between

0 and 15 the ee dio bits are set accordingly. When an controller is generated

as e.g. a graspAt controller using the self.graspAt(...) function, the func-

tion setAux(self, controller) defined in DemoMainpProgram.py is invoked

and copies the values of the global Python variables to the controller parameter

(controller.ee_dio1 = self.ee_dio1). When the insert command is executed

on the Python level, the controller parameters are converted to C++ variables

and a controller containing the ee dio values is inserted into the maniphead action

list. This list is synchronized with another action list running in the ohm exec

real time executive program. There the controller parameters are stored again

in a struct called ohm_spec_t and, when executing the controller, copied to a

command struct ohm_cmd_t which is passed to the actuator thread. Here, among

other things, the low level read and write operations to the different IP modules

are performed. For each digital I/O line the bit stored in ee dio is written to the

IP408 digital I/O module. Which bit at the IP408 card corresponds to which line

at the end effector had once again to be obtained by reverse engineering. The

augmented IP408 bit table can be found in Appendix E.2. The complete list of

altered files can be seen in Appendix D.3.

4.4 Vision software module

4.4.1 Vision in the Minifactory software architecture

To keep in line with Minifactory’s modular software architecture, a client - server

approach was chosen to implement computer vision, structurally based in parts

on previously implemented visual tracking code. Image processing is done in an

independent vision server application. The server then provides the results and

possibly additional data or even complete images to clients. That way there can

be multiple clients running anywhere within the factory. Clients may be indepen-

dent applications as well as Python programs running on Minifactory agents or

in an interface tool simulation environment. All communication between server

and clients is done via the IPT middle ware [2] already used in the Minifactory

environment.

4.4 Vision software module 30

4.4.2 Vision server

The vision server consists of the main server application implemented in vi-

sion serv.cc, the AAAVision class implemented in AAAvision.h and AAAvision.cc

and the PXC_Controls class implemented in pxc controls.h and pxc controls.cc.

The source code can be found in the Appendix B.2. The PXC_Controls class

acts as an interface to the PXC200AL frame grabber card. It loads the driver li-

braries, initializes the card and provides access to camera feed properties, grabbed

frames or to frames converted into other image data structures. All image pro-

cessing routines are implemented in the AAAVision class as e.g. a function that

returns the coordinates of a sphere if one is found in the current frame. The

main server application sets up the IPT communication containers and man-

agers, registers message types and links them to different message handlers which

invoke the corresponding routines in the AAAvision class. The handler for the

VISION GET CLOSEST SPHERE MSG message invokes e.g. the function men-

tioned above and sends the results back to the client in an other message. The

whole vision server is set up in such a way that it is easily extensible by specific

image processing code and client-server messages for future applications. A de-

tailed instruction for this and for setting up the vision server can be found in

Appendix B.4 resp. B.1. So far the vision server only processes direct video feed

from the frame grabber and therefore has to be circumvented when simulating a

factory in the interface tool. However a vision server in simulation mode could

be imagined which reads in and processes previously acquired and saved images

instead of grabbing them from the frame grabber. File input and output routines

are already made available so that the implementation should not require too

much effort.

4.4.3 Vision client(s)

A vision clients sends IPT messages to the client server requesting some data and

receives it in another IPT message. Therefore vision clients can have all kinds

of forms. So far for lack of time, only Python code running on the manipulator

has been enabled to be a client. To be able to set up an IPT connection between

client and server the client needs the IPT specification string of the vision server

e.g. “ipt:ocelot|1500,0”. This IPT “address” has to be set in the VISION SPEC

environment variable on the agent where the maniphead program running the

4.4 Vision software module 31

Python code is launched. When the maniphead application starts it reads the

specification and passes it to the manipulator C/C++ - Python interface. Thus

the string becomes available in Python and an IPT connection can be initiated

from the Python level. What remains to be done is to register the same messages

and message contents as defined in the vision server. Example code can be found

in Appendix B.3.

4.4.4 Image processing

The Intel OpenCV open source vision library was partially ported to QNX6.3 to

enable convenient image processing. OpenCV essentially consists of four main

libraries. The libraries libcxcore, libcv, libcvaux containing all image processing

data structures and algorithms were entirely ported and successfully tested. The

library libhighgui contains a high level user interface and different file input output

functions. Porting the user interface functions of libhighgui to QNX requires

significant work since QNX is quite different from Unix/Linux in these areas. As

the Minifactory concept does not intend for the user to directly access agents while

some factory operation is performed but to monitor it from a central station, there

is no need for any image processing user interface library on QNX. (The central

station, i.e. the computer running the interface tool runs on Linux). Therefore

only some of the file input output operations were extracted and ported into the

library libcvAAA. Should the need arise, special image processing algorithms can

also be implemented into this library in the future.

To be able to pick up and place spheres one needs to find their center points.

Image processing code is needed to analyze the current camera feed and find

spheres, if there are any, but not return points on other items like dust or the

tweezer tips. The algorithm to do that should be as robust as possible, unper-

turbed by changes of the light or by blurring of the camera image because the

spheres are out of focus. A normal and a blurred sample image taken with the end

effector camera can be seen in Figure 18. Two different approaches to find the

spheres were developed and examined. The first one finds circles in thresholded

images using the 21HT Hough transform method described in [17], implemented

in OpenCv. The second generates a threshold image as well, then extracts con-

tours and fits ellipses to the contours. Only ellipses with diameter sizes above a

minimum of 30 pixels (about 110 µm) were retained. Applying a threshold of 130

4.4 Vision software module 32

(a) Spheres in focus (b) Spheres out of focus

Figure 18: Spheres as seen by the end effector camera.

on the gray scale from 0 to 255 proved to be a robust method to avoid recognizing

the tweezer tips, since there is a considerable brightness difference between them

and the spheres. If properly tuned, the second method returned very promising

and robust results as can be seen in Figure 19. The Hough transform method

could be tuned to either recognize the spheres in focus as in Figure 20 or the

blurred ones with acceptable robustness, but not both. Therefore the ellipse fit-

ting method was implemented in the vision server. For instance the function

getClosestSphereDistance(...) in the AAAVision class extracts the ellipses

and returns the distance in X and Y from the ideal pick up point in the middle

between the tweezer’s tips to the closest sphere found. The Hough transform

code can be found in Appendix B.5, the implemented image processing code in

Appendix B.2.

(a) Spheres in focus (b) Spheres out of focus

Figure 19: Results of sphere recognition with ellipse fitting.

4.5 Experimental results 33

Figure 20: Result of sphere recognition with Hough transforms.

4.5 Experimental results

4.5.1 Test setup

The spheres are stored in a AD-23CT-00X4 GelPak box on a sticking gel surface.

For the experiments the GelPak box was glued on top of a courier as seen in Figure

21. As described in section 4.2.1 hardware problems with the frame grabber card

made it impossible to plug it into the manipulator used for picking and placing.

However due to the modular implementation of the vision software it was possible

to plug the card into an other manipulator which is not used otherwise and to

run the vision server on it. The camera feed is redirected from a external video

output of the first manipulator to the frame grabber card in the second.

4.5.2 Factory programming

The programming of a factory for a pick and place demo consists of the generation

of a factory file, a manipulator agent program and a courier program. First a .fac

factory file has to be generated which is a description of the different modules

and objects and their positions in the factory. This is partly done by using the

interface tool and partly by manual editing. The visionDemo factory consists of

one courier with an attached GelPak moving spheres around for a manipulator to

find, pick and then to place them at a different place on the GelPak. Furthermore

a platen table, bumpers for the courier at the edges of the platen as well as

a bridge to mount the manipulator are added. The positions of these objects

entered in the .fac file have to match the actual positions in the real factory.

The generated visionDemo.fac file can be seen in Appendix C.1. The resulting

virtual representation of the factory which is used for factory simulation as well

4.5 Experimental results 34

Figure 21: GelPak with spheres on courier.

as visualization of what is happening when the factory is actually running can

be seen in Figure 22.

Manipulator and courier have to perform coordinated moves e.g. when a

sphere is found and needs to be approached. Since the manipulator program

acts as vision client the manipulator knows where the sphere is and therefore

takes the leading role in the coordination. The tweezer mechanism showed to be

oscillating heavily when a θ axis movement of the manipulator is performed, due

to the heavy weight of the voice coil attached to the tweezer acting like a plate

spring. Therefore the manipulator should only move up and down along Z when

picking and placing while the courier movements take care of the relative X and

Y displacements of the sphere. The manipulator therefore sends messages to the

courier telling it where to perform a movement to and waiting for a confirming

message that the courier has arrived at its destination.

The courier program is implemented in VisionDemoManipProgram.py (Ap-

pendix C.2) and is very simple. When the courier starts up it first sets its zero

position on the platen. Then it initiates a RendezVous as described in 3.3 to

initiate manipulator courier interaction and simply waits for the manipulator to

tell it where to go. Once the pick and place operation is done it terminates the

4.5 Experimental results 35

Figure 22: Virtual sphere pick and place factory.

rendezvous, regains it’s “will” and moves away.

The manipulator program is implemented in VisionDemoManipProgram.py

(Appendix C.3). The manipulator waits after initialization for the courier to re-

quest a RendezVous and accepts it. It then tells the courier to move to a position

under its camera. The manipulator moves down to get the surface of the GelPak

on the courier in focus and begins to perform a search for spheres. This is imple-

mented in the searchForSphere(self) function. The manipulator program tells

the vision server to process the current view through the camera and to return

the coordinates of any found spheres. If none are sent back the manipulator tells

the courier to move. Thus a search pattern as shown in Figure 23 is performed.

Experiments returned that to guarantee that spheres lying exactly at the edges

of the fields of view are guaranteed to be found if the overlapping area of two

searched fields of view is two thirds of the spheres diameter, which is 200 microns.

When a sphere is found the vision server returns the distance form the spheres

center to the ideal position for a pick up. The courier is told to move in such a

4.5 Experimental results 36

way that the sphere’s center comes to lie within a small tolerance area around

this ideal position. Once the sphere is in place, the manipulator moves slightly

down and closes the tweezers one step after another. Closing the tweezer at all

once increases the probabilities of the sphere being pushed away. The manipu-

lator moves up, tells the courier to move to the goal position, moves down and

places the sphere. After moving up again, the RendezVous with the courier is

terminated.

Figure 23: Search pattern performed when looking for spheres.

4.5.3 Results

Picking up and precisely placing spheres could be achieved as is shown in the

image sequence in Figure 26. Though the locating and approaching of spheres

proved to be very robust from the beginning there were a couple of issues with

picking and placing. Sometimes the spheres stuck to one of the tweezer’s tips

when opening the tweezer for placing as shown in Figure 24. This seems to be

caused by static adhesion and could be overcome in some cases by pushing the

sphere and tweezer harder onto the GelPak. However this destroys the GelPak

surface after some time. As seen in Figure 25 some spheres are not perfect

spheres but have an egg like shape. These proved to be very difficult to pick

up. An alignment of the long axis of these ellipsoids with the tweezers could

bring some improvement but was not tried since some manipulator movement

in θ would be necessary. This is made impossible so close to spheres by the

4.5 Experimental results 37

described uncontrollable oscillations of the tweezer. As the spheres also vary in

size the Z position of the tips of the tweezer would have to be slightly adapted

to avoid closing the tweezer below or above the sphere’s midpoint while sliding

on its surface and pushing it away. Due to lack of time this could however not

be implemented anymore.

Figure 24: Sphere sticking to tweezer when placing.

(a) (b)

Figure 25: Egg shaped spheres.

4.5 Experimental results 38

(a) GelPak with spheres (b) Going down

(c) Searching for spheres (d) Picking up

(e) Going up with sphere (f) Moved towards goal

(g) Placing sphere (h) Going up

Figure 26: Pick and place of a sphere.

5 Summary and Contributions 39

5 Summary and Contributions

A significant amount of time available for this thesis was spent solving problems

and correcting bugs appearing in conjunction with the Minifactory refitting and

upgrading effort. Though some issues could not be dealt with in time, at the end

stands a Minifactory environment capable again of performing tasks such as the

sphere pick and place. Pick up, place and screw agent programs and procedures

have been developed that enable the complete assembly of the telescopic sight

once the coordination and platen sensors are available again and the manipulator

fixation problem has been solved. The tweezer gripper is now controlled and can

be actuated. The possibility to send signals over the four digital I/O lines to the

end effector has been integrated in the Manipulator software. This could also be

put to use in different future grippers utilizing similar control circuits as designed

for the tweezer voice coil actuator. An extensible, independent vision process-

ing client server module has been developed and integrated in the Minifactory

software architecture. Procedures for a robust sphere recognition have been im-

plemented. Demonstration factory and agent programs for the sphere pick and

place have been generated. Finally, spheres of 300 µm diameter have successfully

been picked up and placed at a target position.

The presented work can serve as a base for future Minifactory pick and place

applications. The pick and place functions should be usable for different items,

picked and placed with vacuum and air or different grippers with only minor

adaptations.

5.1 Future Work

Further work can be done to enhance the robustness of the sphere pickup. Due to

lack of time this could not be optimized. The next step would then be to enable

and optimize the pick up of smaller metal spheres with a diameter around 40 µm.

The mechanical design of the tweezer gripper should be adapted to solve the

described oscillation problems when actuating the manipulators θ axis. A mod-

ification of the fixation of voice coil and magnet on the tweezer could probably

lead to the possibility to take the gripper apart without having totally different

currents/forces needed to close the tweezer after reassembly. A reexamination of

the manipulators Z axis PD and PID controller parameters could be a way to

5.1 Future Work 40

solve the position errors appearing after the refitting and the use of heavier end

effectors.

The vision server could be extended by a simulation mode as described in

Section 4.4.2 to tightly integrate it into the AAA concept and to speed up assem-

bly system development processes. Vision clients receiving complete images from

the vision server could be imagined on the interface tool system to monitor the

manipulator’s vision and the vision processing. Likewise, a client acting as an

image processing code development environment integrated in the interface tool

could be created. Since this would be running on a Linux system the OpenCv

user interface library is already available to display image data and could be used.

References 41

References

[1] H. B. Brown, P. Muir, A. Rizzi, M. Sensi, and R. Hollis. A precision ma-

nipulator module for assembly in a minifactory environment. In Proceedings

of the 2001 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS ’01), volume 2, pages 1030 – 1035, 2001.

[2] J. Gowdy. Ipt: An object oriented toolkit for interprocess communication.

Technical Report CMU-RI-TR-96-07, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, March 1996.

[3] J. Gowdy and Z. Butler. An integrated interface tool for the architecture

for agile assembly. In IEEE International Conference on Robotics and Au-

tomation, volume 4, pages 3097 – 3102, May 1999.

[4] J. Gowdy and A. Rizzi. Programming in the architecture for agile assembly.

In IEEE International Conference on Robotics and Automation, volume 4,

pages 3103 – 3108, May 1999.

[5] R. Hollis and J. Gowdy. Miniature factories for precision assembly. In

International Workshop on Microfactories, pages 9 – 14, December 1998.

[6] R. Hollis and A. Quaid. An architecture for agile assembly. In American

Society of Precision Engineering 10th Annual Mtg, October 1995.

[7] R. L. Hollis, D. O’Halloran, G. Fedder, N. Sarkar, and J. R. Jones. Vision

guided pick and place in a minifactory environment. In Proc. 5th Int’l. Symp.

on Microfactories, Besancon, France, October 2006.

[8] R. L. Hollis, A. A. Rizzi, H. B. Brown, A. E. Quaid, and Z. J. Butler. Toward

a second-generation minifactory for precision assembly. In Proceedings Int’l

Advanced Robotics Program, Moscow, Russia, April 2003.

[9] S. Kume and A. Rizzi. A high-performance network infrastructure and pro-

tocols for distributed automation. In Proceedings of the 2001 IEEE Interna-

tional Conference on Robotics and Automation (ICRA ’01), volume 3, pages

3121 – 3126, May 2001.

References 42

[10] W.-C. Ma, A. Rizzi, and R. Hollis. Optical coordination sensor for preci-

sion cooperating robots. In IEEE International Conference on Robotics and

Automation 2000, volume 2, pages 1621 – 1626, April 2000.

[11] P. Muir, A. Rizzi, and J. Gowdy. Minifactory: A precision assembly system

that adapts to the product life cycle. In SPIE Symposium on Intelligent

Systems and Advanced Manufacturing, October 1997.

[12] A. Quaid and R. Hollis. Cooperative 2-dof robots for precision assembly. In

IEEE International Conference on Robotics and Automation, April 1996.

[13] A. Quaid and R. Hollis. 3-dof closed-loop control for planar linear motors.

In IEEE Int’l. Conf. on Robotics and Automation, pages 2488 – 2493, May

1998.

[14] A. Rizzi. Hybrid control as a method for robot motion programming. In

IEEE Int’l. Conf. on Robotics and Automation, volume 1, pages 832 – 837,

May 1998.

[15] A. Rizzi, J. Gowdy, and R. Hollis. Agile assembly architecture: An agent-

based approach to modular precision assembly systems. In IEEE Int’l. Conf.

on Robotics and Automation, volume 2, pages 1511 – 1516, April 1997.

[16] A. Rizzi, J. Gowdy, and R. Hollis. Distributed programming and coordi-

nation for agent-based modular automation. In The Ninth International

Symposium of Ribotics Research, Snowbird,UT, October 1999.

[17] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler. Comparative study of

hough transform methods for circle finding. Image Vision Comput., 8(1):71–

77, 1990.

A OSTI software modules 43

A OSTI software modules

A.1 Pick up

osti_pickup(self, dest_z, dest_th, offset, grippers, test_gripper, graspPressure1 =\

30000, graspPressure2 = 30000,limit = 5.0)

#

Picks up parts and /or tools with OHM endeffector.

#

Context: OSTI Project, Demo on 9/20/06

Version 1.00, 9/19/06

Authors: Cornelius Niemeyer <cornelius.niemeyer@gmail.com>,

Mark Dzmura <mdz@cs.cmu.edu

based on previous version of NN

#

def osti_pickup(self, dest_z, dest_th, offset, grippers, test_gripper, graspPressure1 =\

30000, graspPressure2 = 30000,limit = 5.0,verbose =1):

#Air and vacuum channels (IF POSSIBLE DEFINE THIS GLOBALLY !!)

GRIP_PART_TOOL = 1 # air/vac port #1 is assigned to part tool

GRIP_PART = 2 # air/vac port #2 is assigned to part

GRIP_SUCK = -1

GRIP_OFF = 0

GRIP_BLOW = 1

#Movement tolerances (for predicates)

TH_DIFF_MAX=0.04 #in Radians

TH_DIFF_MIN=0.04 #in Radians

TH_DIFF_SINGLESTEP=0.04 #in Radians

Z_DIFF_MAX=2.0 #1.0 #in mm

Z_DIFF_MIN=1.0 #0.2 #in mm

if verbose:

print "\n###"

print "# OHM pickup() function #"

print "# #"

print "# Version 1.00 - OSTI Project #"

print "# (c) Cornelius Niemeyer, Mark Dzmura, MSL 2006 #"

print "###"

print "\n# Parameters: "

print "# graspPressure1 is %6.4f Pa" % (graspPressure1)

print "# graspPressure2 is %6.4f Pa\n" % (graspPressure2)

print "# limit is %6.4f sec\n" % (limit)

#

move to courier approach position

#

self.singleStep(dest_z + offset, dest_th)

A.1 Pick up 44

if verbose:

print"_______________________________________\n"

print"Moving into position, starting pickup."

print"_______________________________________\n"

self.sleep(2)

#

drive down SLOWLY to part position (enable grip vac #1 and #2)

#

predicate = self.inBox(min_th = dest_th-0.04, max_th = dest_th+0.04)

print "Single stepping"

self.singleStep(dest_z, dest_th, move_predicate=predicate)

print "Single stepped"

self.sleep(0.1)

#Grasp ctrl

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

controller = self.graspAt(dest_z, dest_th, grippers)

action = FbControllerAction(controller,

self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,

dest_th-TH_DIFF_MIN, dest_th+TH_DIFF_MAX))

id = self.insert(action)

print"Grasp ctrl"

#Move to pistion ctrl

id2 = self.insert(FbControllerAction(self.moveTo(dest_z, dest_th),

self.inBox()), id)

print"Move to Position ctrl"

shouldn’t have to do this!

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

predicate = self.inBox(dest_z+offset-Z_DIFF_MIN, dest_z+offset+Z_DIFF_MAX, dest_th- \

TH_DIFF_MIN, dest_th+TH_DIFF_MAX)

if test_gripper == 1:

predicate.max_gripper1_pressure = graspPressure1

elif test_gripper == 2:

predicate.max_gripper2_pressure = graspPressure2

controller = self.stopAt(dest_z+offset, dest_th)

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("GotPart"))

tag = self.tags["GotPart"]

shouldn’t need below statement...?

tag.fired = 0

id = self.insert(action)

A.2 Place 45

predicate = self.inBox()

if test_gripper == 1:

predicate.max_gripper1_pressure = graspPressure1

elif test_gripper == 2:

predicate.max_gripper2_pressure = graspPressure2

self.insert(FbControllerAction(self.moveTo(dest_z+10, dest_th),

predicate), id)

shouldn’t need to set self.gripperN here....

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

start_time = FbTime_getTimeOfDay()

status = 1

while not tag.fired:

cur_time = FbTime_getTimeOfDay()

if test_gripper == 1:

gripper_pressure = self.interface.gripper1_pressure

elif test_gripper == 2:

gripper_pressure = self.interface.gripper2_pressure

print "Elapsed time %5.2f, %8.0f, %6.4f, %6.4f" % \

(cur_time.getValue()-start_time.getValue(), \

gripper_pressure, dest_z, self.interface.pos[0])

if cur_time.getValue()-start_time.getValue() > limit:

status = 0

break

self.processEvents(1.0)

tag.fired = 0

return status

A.2 Place

osti_drop(self, dest_z, dest_th, offset, grippers, test_gripper, blow_time)

#

Drops parts and /or tools hold by OHM endeffector.

#

Context: OSTI Project, Demo on 9/20/06

Version 1.00, 9/19/06

Author: Cornelius Niemeyer <cornelius.niemeyer@gmail.com>

#

#

def osti_drop(self, dest_z, dest_th, offset, grippers, test_gripper,\

blow_time=2.0,verbose =1):

A.2 Place 46

#Air and vacuum channels (IF POSSIBLE DEFINE THIS GLOBALLY !!)

GRIP_PART_TOOL = 1 # air/vac port #1 is assigned to part tool

GRIP_PART = 2 # air/vac port #2 is assigned to part

GRIP_SUCK = -1

GRIP_OFF = 0

GRIP_BLOW = 1

GRIP_PRESSURE_ALMOST_ATM = 90000

#Movement tolerances (for predicates)

TH_DIFF_MAX=0.04 #in Radians

TH_DIFF_MIN=0.04 #in Radians

TH_DIFF_SINGLESTEP=0.04 #in Radians

Z_DIFF_MAX=2.0 #3.0 #in mm

Z_DIFF_MIN=0.3 #0.5 #in mm

if verbose:

print "\n###"

print "# OHM drop() function #"

print "# #"

print "# Version 1.00 - OSTI Project #"

print "# (c) Cornelius Niemeyer, Mark Dzmura, MSL 2006 #"

print "###"

print "\n# Parameters: "

print "# BLOW_TIME is %6.4f sec " % (blow_time)

print "# GRIP_PRESSURE_ALMOST_ATM is %6.4f Pa\n" % (GRIP_PRESSURE_ALMOST_ATM)

#

move to courier approach position

#

self.singleStep(dest_z + offset, dest_th)

if verbose:

print"_______________________________________\n"

print"Moving into position, starting to drop."

print"_______________________________________\n"

self.sleep(2)

#Controller , executed 3 - if still vacuum, blow a little air, start drop

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,

dest_th-TH_DIFF_MIN,dest_th+TH_DIFF_MAX)

if test_gripper == 1:

predicate.max_gripper1_pressure = GRIP_PRESSURE_ALMOST_ATM

elif test_gripper == 2:

predicate.max_gripper2_pressure = GRIP_PRESSURE_ALMOST_ATM

A.2 Place 47

for gr in grippers:

self.grip_set(gr, GRIP_BLOW, True)

controller = self.stopAt(dest_z, dest_th)

controller.limit = (40, controller.limit[1])

controller.switch_time = 0.0075

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("StartDropped"))

id = self.insert(action)

print"Start drop ctrl"

#Controller , executed 4

for gr in grippers:

self.grip_set(gr, GRIP_OFF)

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,

dest_th-TH_DIFF_MIN,dest_th+TH_DIFF_MAX)

if test_gripper == 1:

predicate.min_gripper1_pressure = GRIP_PRESSURE_ALMOST_ATM

elif test_gripper == 2:

predicate.min_gripper2_pressure = GRIP_PRESSURE_ALMOST_ATM

controller = self.stopAt(dest_z, dest_th)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

self.insert(action)

print "air pressure high ctrl"

#Controller , executed 2 - move very close

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

controller = self.moveTo(dest_z, dest_th)

predicate = self.inBox(max_z = dest_z+Z_DIFF_MAX+2.0, min_th = dest_th-\

TH_DIFF_MIN, max_th = dest_th+TH_DIFF_MAX)

id = self.insert(FbControllerAction(controller, predicate), id)

print "Move very close ctrl"

#Controller , executed 1 - move closer

action = FbControllerAction(self.moveTo(dest_z+2, dest_th),

self.inBox())

def_id = self.insert(action, id)

print "Move close ctrl"

self.truncate(def_id)

self.waitFor("StartDropped")

#Controller to blow air for BLOW_TIME seconds

A.3 Screw 48

for gr in grippers:

self.grip_set(gr, GRIP_BLOW)

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,

dest_th-TH_DIFF_MIN,dest_th+TH_DIFF_MAX)

controller = self.stopAt(dest_z, dest_th)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("Blowing"))

blow_id=self.insert(action)

print "Blowing air ctrl"

self.waitFor("Blowing")

self.sleep(blow_time)

self.remove(blow_id)

for gr in grippers:

self.grip_set(gr, GRIP_OFF)

#Controller to assure that item has dropped (== air pressure is up)

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,

dest_th-TH_DIFF_MIN,dest_th+TH_DIFF_MAX)

if test_gripper == 1:

predicate.min_gripper1_pressure = GRIP_PRESSURE_ALMOST_ATM

elif test_gripper == 2:

predicate.min_gripper2_pressure = GRIP_PRESSURE_ALMOST_ATM

controller = self.stopAt(dest_z, dest_th)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("Dropped"))

id = self.insert(action)

print "drop assurance ctrl"

self.waitFor("Dropped")

if verbose:

print"____________________________________\n"

print" Item dropped."

print"____________________________________\n"

self.sleep(0.1)

self.singleStep(dest_z + offset, dest_th)

return 1

A.3 Screw

osti_screw(self, dest_z, dest_th, offset, grippers, total_turn, \

A.3 Screw 49

first_turn=math.pi, turn_back=0.1, pitch=0.0, verbose=1)

#

performs movements to screw lens fixation rings into collimeter housing, runs on OHM

#

Context: OSTI Project, Demo on 9/20/06

Version 1.01, 9/19/06

Author: Cornelius Niemeyer, cornelius.niemeyer@gmail.com

#

Parameters:

- total_turn : Total turn in radians; Screwing in is >0

- first_turn : Size of first turn when trying to catch thread (in radians); Screwing

in is >0

- turn_back : Angle to rotate back after each turn to ease the tension on the ring

(in radians)

- pitch : Pitch per revolution in mm

- blow : if set to true, blowing will be activated when going up.

def osti_screw(self, dest_z, dest_th, offset, grippers, total_turn, first_turn=math.pi,\

turn_back=0.1, pitch=0.0, blow=0, verbose=1):

#Air and vacuum channels (IF POSSIBLE DEFINE THIS GLOBALLY !!)

GRIP_PART_TOOL = 1 # air/vac port #1 is assigned to part tool

GRIP_PART = 2 # air/vac port #2 is assigned to part

GRIP_SUCK = -1

GRIP_OFF = 0

GRIP_BLOW = 1

#Movement tolerances (for predicates)

TH_DIFF_MAX=0.04 #in Radians

TH_DIFF_MIN=0.04 #in Radians

TH_DIFF_SINGLESTEP=0.04 #in Radians

Z_DIFF_MAX=2.5 #3.0 #in mm

Z_DIFF_MIN=0.3 #0.5 #in mm

#WORKING TEST VALUES:

#------------------------

#dest_z = 51.0

#dest_th = 6*math.pi/4.0

#

#Turning angles:

#TOTAL_TURN = 560.0/180.0*math.pi

#FIRST_TURN = 180.0/180.0*math.pi

#TURN_BACK = 0.1

#

#Pitch:

#PITCH = 0.6

if verbose:

print "\n###"

print "# OHM Screwdriver function #"

print "# #"

A.3 Screw 50

print "# Version 1.01 - OSTI Project #"

print "# (c) Cornelius Niemeyer, MSL 2006 #"

print "###"

print "\n# Turning angles [radians]: "

print "# TOTAL_TURN is %6.4f" % (total_turn)

print "# FIRST_TURN is %6.4f" % (first_turn)

print "# TURN_BACK is %6.4f\n" % (turn_back)

print "\n# Pitch [mm]: "

print "# PITCH is %6.4f" % (pitch)

#Decompose Screwing revolutions

noHT=int((total_turn-first_turn) / math.pi) #Number of half turns after initial half turn

resTurn=total_turn-first_turn-(noHT)*math.pi #Residual radians to turn in last move

#

move to courier approach position

#

self.singleStep(dest_z + offset, dest_th)

self.sleep(2)

#Controller 1, executed 3

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,dest_th-TH_DIFF_MIN, \

dest_th+ TH_DIFF_MAX)

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

controller = self.stopAt(dest_z, dest_th)

controller.limit = (40, controller.limit[1])

controller.switch_time = 0.0075

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("MovedToPosition"))

id = self.insert(action)

#Controller 2, executed 2

controller = self.moveTo(dest_z, dest_th)

predicate = self.inBox(max_z = dest_z+2.0+Z_DIFF_MAX, min_th = dest_th-TH_DIFF_MIN,

max_th = dest_th+TH_DIFF_MAX)

id = self.insert(FbControllerAction(controller, predicate), id)

#Controller 3, executed 1

action = FbControllerAction(self.moveTo(dest_z+2.0, dest_th),

self.inBox())

def_id = self.insert(action, id)

self.truncate(def_id)

A.3 Screw 51

self.waitFor("MovedToPosition")

if verbose:

print"____________________________________\n"

print"Moved to Position, Beginning to Screw"

print"____________________________________\n"

#

#First screwing motion, Turning first_turn radiants, controller 4 , executed 4

#

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX)

self.singleStep(dest_z, dest_th-first_turn-turn_back,th_margin=TH_DIFF_SINGLESTEP,\

truncate_action_list=0, omega_max=0.5)

#controller = self.moveTo(dest_z, dest_th-first_turn,omega_max=0.5)

#controller.limit = (40, controller.limit[1])

#action = FbControllerAction(controller, predicate)

#self.insert(action)

#predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,dest_th-first_turn, \

dest_th-first_turn+TH_DIFF_MAX)

#controller = self.stopAt(dest_z, dest_th-first_turn)

#controller.limit = (40, controller.limit[1])

#action = FbControllerAction(controller, predicate)

#action.addStartCallback(self.tag("Screwed"))

#self.insert(action)

#

#Turning a bit back to ease the tension controller 5 , executed 5

#

predicate = self.inBox(dest_z-Z_DIFF_MIN, dest_z+Z_DIFF_MAX,dest_th-first_turn- \

turn_back- TH_DIFF_MIN, dest_th-first_turn+TH_DIFF_MAX)

controller = self.moveTo(dest_z, dest_th-first_turn,omega_max=0.3)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("TurnedBack"))

turn_id = self.insert(action)

print "1. Screwing Motion: Turn back Ctrl"

self.waitFor("TurnedBack")

self.sleep(2.5)

#

#going up after turning, controller 6 executed 6

#

if blow:

for gr in grippers:

A.3 Screw 52

self.grip_set(gr, GRIP_BLOW)

predicate = self.inBox(min_th = dest_th-first_turn-TH_DIFF_MIN,max_th = dest_th-

first_turn+TH_DIFF_MAX)

controller = self.moveTo(dest_z+10, dest_th-first_turn)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

self.insert(action)

print "1. Screwing Motion: Go up Ctrl"

#

#Assuring arrival , controller 7, executed 7

#

predicate = self.inBox(dest_z+10.0-Z_DIFF_MIN, dest_z+10.0+Z_DIFF_MAX,

min_th = dest_th-first_turn-TH_DIFF_MIN,max_th = dest_th- \

first_turn+ TH_DIFF_MAX)

controller = self.stopAt(dest_z+10, dest_th-first_turn)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("Turned"))

go_up_id=self.insert(action)

print "1. Screwing Motion: Assuring arrival Ctrl"

#

#Setting up for Screwing loop, Ring is assumed to have caught the thread

#

self.waitFor("Turned")

self.truncate(go_up_id)

not_finished =1

halfTurnCounter=0

PITCH_DIFF=pitch*first_turn/(2.0*math.pi)

if noHT==0:

SL_TURN=resTurn

turn_back=0.0

else:

SL_TURN=math.pi

#

#Screwing loop

#

if verbose:

print"____________________________________\n"

print"Made first turn, starting screwing loop"

print"____________________________________\n"

A.3 Screw 53

while not_finished:

#

#Turn Back

#

for gr in grippers:

self.grip_set(gr, GRIP_OFF)

controller = self.moveTo(dest_z+offset, dest_th)

predicate = self.inBox(dest_z-Z_DIFF_MIN+offset, dest_z+Z_DIFF_MAX+offset)

tb_id=self.insert(FbControllerAction(controller, predicate))

print "S_Loop: Turn back Ctrl."

#self.truncate(tb_id)

#

#Go down

#

for gr in grippers:

self.grip_set(gr, GRIP_SUCK)

#controller = self.moveTo(dest_z, dest_th,vz_max=25.0)

predicate = self.inBox(min_th = dest_th-TH_DIFF_MIN, max_th = dest_th+TH_DIFF_MAX)

#self.insert(FbControllerAction(controller, predicate))

print "S_Loop: Go down Ctrl."

self.singleStep(dest_z-PITCH_DIFF, dest_th, th_margin=TH_DIFF_SINGLESTEP, \

truncate_action_list=0, vz_max=25.0, move_predicate=predicate)

#

#Turn SL_TURN radians (normally PI)

#

predicate = self.inBox(dest_z-PITCH_DIFF-Z_DIFF_MIN, dest_z-PITCH_DIFF+Z_DIFF_MAX)

self.singleStep(dest_z-PITCH_DIFF, dest_th-SL_TURN-turn_back, th_margin= \

TH_DIFF_SINGLESTEP, truncate_action_list=0, omega_max=0.5, move_predicate= \

predicate)

#

#Turn Back to ease tension

#

predicate = self.inBox(dest_z-PITCH_DIFF-Z_DIFF_MIN, dest_z-PITCH_DIFF+Z_DIFF_MAX, \

dest_th-SL_TURN-TH_DIFF_MIN-turn_back, dest_th-SL_TURN+TH_DIFF_MAX)

controller = self.moveTo(dest_z-PITCH_DIFF, dest_th-SL_TURN,omega_max=0.3)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

tagString="TurnedBack %i" %(noHT)

action.addStartCallback(self.tag(tagString))

self.insert(action)

print "S_Loop: Turn back to ease tension Ctrl."

A.3 Screw 54

self.waitFor(tagString)

self.sleep(2.5)

#

#Go up

#

if blow:

for gr in grippers:

self.grip_set(gr, GRIP_BLOW)

predicate = self.inBox(min_th = dest_th-SL_TURN-TH_DIFF_MIN,max_th = dest_th- \

SL_TURN+ TH_DIFF_MAX)

#self.singleStep(dest_z+10, dest_th-SL_TURN+turn_back, th_margin=0.04, \

truncate_action_list=0, omega_max=0.5, move_predicate=predicate)

controller = self.moveTo(dest_z+offset, dest_th-SL_TURN)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

#action.addStartCallback(self.tag("Turned_PI"))

gu_id=self.insert(action)

print "S_Loop: Go up Ctrl."

predicate = self.inBox(dest_z+offset-Z_DIFF_MIN, dest_z+offset+Z_DIFF_MAX, \

min_th = dest_th-SL_TURN-TH_DIFF_MIN,max_th = dest_th-SL_TURN+ \

TH_DIFF_MAX)

controller = self.stopAt(dest_z+offset, dest_th-SL_TURN)

controller.limit = (40, controller.limit[1])

action = FbControllerAction(controller, predicate)

action.addStartCallback(self.tag("Turned_PI"))

go_up_id=self.insert(action)

print "S_Loop: Assuring arrival Ctrl"

self.waitFor("Turned_PI")

self.truncate(go_up_id)

self.remove(go_up_id)

halfTurnCounter=halfTurnCounter+1

PITCH_DIFF=PITCH_DIFF+pitch*SL_TURN/(2*math.pi) #unless doing weird things,

#this will always be pitch/2

if noHT==0: #Residual already done.

not_finished =0

if halfTurnCounter == (noHT-1): #one more turn to go

if resTurn <= TH_DIFF_MIN: #not worth to do residual...

turn_back=0.0

if halfTurnCounter == noHT: #all HT done

if resTurn > TH_DIFF_MIN: #Is it worth to turn back ?

SL_TURN = resTurn

turn_back=0.0 #don’t want to turn back,

B Vision 55

screwing in tightly

#Could be used to screw in

even tighter when set <0

else :

not_finished =0

if halfTurnCounter > noHT: #all HT +Residual done

not_finished =0

if verbose:

print"____________________________________\n"

print"Ended screwing loop"

print"____________________________________\n"

self.sleep(1)

for gr in grippers:

self.grip_set(gr, GRIP_OFF)

self.singleStep(dest_z + offset, dest_th)

return 1

B Vision

B.1 How to set up the vision system

• Connect the camera feed to the frame grabber. Assure that the camera is

running.

• Run the vision server executable on the system with the frame grabber

card. When the server starts it displays the message “Portal ID is XXX”

with the IPT “address” instead of XXX.

• Copy this address string and set is as value of an environment variable

named VISION SPEC on the manipulator system.

(e.g. export VISION SPEC=ipt:ocelot|1500,0)

• start maniphead. The vision servers IPT specification should be recognized

and available in Python.

B.2 Vision server source code 56

B.2 Vision server source code

• vision srv.cc:

/***

| vision_serv.cc |

| |

| AAA Vision package 2.0 |

|---|

| Vision server application main function. Initializes AAAVision and |

| PXC_Control class. Sets up an IPT container manager. Implement your |

| IPT messages and message handlers in here. |

| |

| |

| Context: Vision based pick and place project, |

| |

| See also: "Pick and Place in a Minifactory environment", Diploma |

| thesis, Cornelius Niemeyer, ETH Zuerich, 12/2006 |

| |

| |

| |

| (c) 2006 Cornelius Niemeyer, MSL |

| |

|---|

| |

| TARGET PLATFORM: QNX (6.3) |

| |

***/

#include "iostream.h"

#include "stdio.h"

#include "time.h"

#include "AAAvision.h"

#include <AAA/AAA.h>

#include <AAA/FoContainer.h>

#include <AAA/communications/FbMessage.h>

#include <AAA/communications/FoMessageHandler.h>

#include <AAA/communications/FbContainerManager.h>

#define VERBOSE 1

#define VISION_SAVE_CURRENT_BMP_MSG "VISION_SAVE_CURRENT_BMP_MSG"

#define VISION_SAVE_CURRENT_BMP_FMT "string"

#define VISION_GET_CLOSEST_SPHERE_MSG "VISION_GET_CLOSEST_SPHERE_MSG"

#define VISION_GET_CLOSEST_SPHERE_FMT ""

#define VISION_FOUND_CLOSEST_SPHERE_MSG "VISION_FOUND_CLOSEST_SPHERE_MSG"

#define VISION_FOUND_CLOSEST_SPHERE_FMT "{ float, float }"

#define VISION_GET_CLOSEST_SPHERE_D_MSG "VISION_GET_CLOSEST_SPHERE_D_MSG"

#define VISION_GET_CLOSEST_SPHERE_D_FMT ""

B.2 Vision server source code 57

#define VISION_FOUND_CLOSEST_SPHERE_D_MSG "VISION_FOUND_CLOSEST_SPHERE_D_MSG"

#define VISION_FOUND_CLOSEST_SPHERE_D_FMT "{ float, float, int }"

struct save_current_bmp_param{

//int a;

char* filename;

};

void save_current_bmp_hand(FoContainer* recv, FbMessage* msg, void* data)

{

if (VERBOSE) printf("Entering save_current_bmp_handler.\n");

AAAVision* AV = (AAAVision*) data;

save_current_bmp_param* param= (save_current_bmp_param*)msg->getData();

printf("Saving image as %s\n", param->filename);

AV->saveCurrentBMPImage(param->filename);

if (VERBOSE) printf("Image saved.\n");

}

void get_closest_sphere_hand(FoContainer* recv, FbMessage* msg, void* data)

{

if (VERBOSE) printf("Entering get_closest_sphere_handler.\n");

AAAVision* AV = (AAAVision*) data;

CvPoint2D32f res = AV->getClosestSphereCenter(15,15,130,VERBOSE);

recv->replyTo(msg,VISION_FOUND_CLOSEST_SPHERE_MSG, &res);

if (VERBOSE) printf("Closest sphere send back.\n");

}

void get_closest_sphere_d_hand(FoContainer* recv, FbMessage* msg, void* data)

{

if (VERBOSE) printf("Entering get_closest_sphere_d_handler.\n");

AAAVision* AV = (AAAVision*) data;

CalcDistanceRes res = AV->getClosestSphereDistance(15,15,130,VERBOSE);

recv->replyTo(msg,VISION_FOUND_CLOSEST_SPHERE_D_MSG, &res);

if (VERBOSE) printf("Distance to closest sphere send back.\n");

}

int main(int argc, char *argv[])

{

AAA::basicInit();

// set up the container manager

char buffer[200];

int port_num = 1500; // fixed at 1500 for now

sprintf(buffer, "ipt: port=%d;", port_num);

B.2 Vision server source code 58

FbContainerManager* manager = AAA::getContainerManager(buffer);

FoContainer* portal = new FoContainer();

portal->ref();

portal->setName("visionPortal");

printf("Portal ID is %s\n", portal->getSpecString());

// create the AAA vision class

AAAVision AV;

portal->registerMessage(VISION_SAVE_CURRENT_BMP_MSG,VISION_SAVE_CURRENT_BMP_FMT);

portal->registerMessage(VISION_GET_CLOSEST_SPHERE_MSG,VISION_GET_CLOSEST_SPHERE_FMT);

portal->registerMessage(VISION_FOUND_CLOSEST_SPHERE_MSG,VISION_FOUND_CLOSEST_SPHERE_FMT);

portal->registerMessage(VISION_GET_CLOSEST_SPHERE_D_MSG,VISION_GET_CLOSEST_SPHERE_D_FMT);

portal->registerMessage(VISION_FOUND_CLOSEST_SPHERE_D_MSG,VISION_FOUND_CLOSEST_SPHERE_D_FMT);

portal->addMessageHandler(VISION_SAVE_CURRENT_BMP_MSG,

new FoRoutineMessageHandler(save_current_bmp_hand, &AV));

portal->addMessageHandler(VISION_GET_CLOSEST_SPHERE_MSG,

new FoRoutineMessageHandler(get_closest_sphere_hand, &AV));

portal->addMessageHandler(VISION_GET_CLOSEST_SPHERE_D_MSG,

new FoRoutineMessageHandler(get_closest_sphere_d_hand, &AV));

printf("Vision Server is set up.\n");

manager->mainLoop();

}

• AAAVision.h:

/***

| AAAvision.cc |

| |

| AAA Vision package 2.0 |

|---|

| Headerfile for AAAvision image processing class. Implement all |

| your vision code in here. |

| |

| |

| Context: Vision based pick and place project, |

| |

| See also: "Pick and Place in a Minifactory environment", Diploma |

| thesis, Cornelius Niemeyer, ETH Zuerich, 12/2006 |

| |

| |

| |

| (c) 2006 Cornelius Niemeyer, MSL |

| |

|---|

| |

| TARGET PLATFORM: QNX (6.3) |

| |

B.2 Vision server source code 59

***/

#ifndef _AAAVISION_H_

#define _AAAVISION_H_

#include "pxc_controls.h"

#include "cvAAA.h"

#include "cxcore.h"

#include "cv.h"

struct CalcDistanceRes

{

float x_dist;

float y_dist;

int success;

};

class AAAVision

{

private:

PXC_Controls pxc;

CvPoint tweezer;

public:

AAAVision();

~AAAVision();

int saveCurrentBMPImage(char* filename);

CvBox2D getClosestSphere(int min_a, int min_b, int threshold , bool verbose);

CvPoint2D32f getClosestSphereCenter(int min_a, int min_b, int threshold , bool verbose);

CalcDistanceRes getClosestSphereDistance(int min_a, int min_b, int threshold , bool verbose);

};

#endif //_AAAVISION_H_

• AAAVision.cc:

/***

| AAAvision.cc |

| |

| AAA Vision package 2.0 |

|---|

| Implementation of AAAvision image processing class. Implement all |

| your vision code in here. |

| |

B.2 Vision server source code 60

| Currently the follwing functions are implemented: |

| - SaveCurrentBMPImage : Grabs a frame and writes it into a .bmp |

| file |

| - GetClosestSphere: returns ellipse box of closest sphere to |

| the specified gripper center point |

| - GetClosestSphereCenter: returns center point of closest sphere |

| to the specified gripper center point |

| - GetClosestSphereDistance: returns distance of closest sphere |

| to the specified gripper center point |

| |

| Context: Vision based pick and place project, |

| |

| See also: "Pick and Place in a Minifactory environment", Diploma |

| thesis, Cornelius Niemeyer, ETH Zuerich, 12/2006 |

| |

| |

| |

| (c) 2006 Cornelius Niemeyer, MSL |

| |

|---|

| |

| TARGET PLATFORM: QNX (6.3) |

| |

***/

#include "AAAvision.h"

#include <math.h>

#include <stdio.h>

AAAVision::AAAVision()

{

printf("Initializing Framegrabber...\n");

if (!pxc.pxc_init()) printf("Framegrabber initialisation failed ! \n");

pxc.setCamera(0);

pxc.setComposite();

//gripper center point.

//should be recognised automaticly by image analysis

//replace by automatic algorithm

//coordiantes with respect to image left upper corner.

tweezer.x=495;

tweezer.y=230;

//working estimate in m (5x magnifying objective)

pxc.pixellength=0.00000374;

}

AAAVision::~AAAVision()

{

B.2 Vision server source code 61

pxc.pxc_term();

}

int AAAVision::saveCurrentBMPImage(char* filename)

{

CvMat image;

image=pxc.grabCvImage();

//pxc.flib.WriteBMP(pxc.fgframe,"/root/testbbb.bmp",1);

if(cvSaveImage(filename, &image))

{

printf ("Image written to %s .\n", filename);

return 1;

}else{

printf ("Writing Image to %s failed !\n", filename);

return 0;

}

}

CvBox2D32f AAAVision::getClosestSphere(int min_a, int min_b, int threshold, bool verbose)

{

CvMemStorage* stor;

CvSeq* cont;

CvBox2D32f* box;

CvBox2D32f result ={{0}};

CvPoint* PointArray;

CvPoint2D32f* PointArray2D32f;

CvMat *image;

CvMat *image_th;

double min_dist=10000000.0;

double dist;

int nEllipses=0;

CvMat imageRGB = pxc.grabCvImage();

// convert image to be grayscale

image = cvCreateMat(pxc.height,pxc.width,CV_8UC1);

cvCvtColor(&imageRGB, image, CV_RGB2GRAY);

image_th=cvCloneMat(image);

// Create dynamic structure and sequence.

stor = cvCreateMemStorage(0);

cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint) , stor);

// Threshold the source image.

cvThreshold(image, image_th, threshold, 255, CV_THRESH_BINARY);

//detect contours

B.2 Vision server source code 62

cvFindContours(image_th, stor, &cont, sizeof(CvContour),

CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cvPoint(0,0));

// approximate contours by ellipses

double dist_x;

double dist_y;

int count;

for(;cont;cont = cont->h_next)

{

count = cont->total; // number of points in contour

// Number of points must be more than or equal to 6 (for cvFitEllipse_32f).

if(count < 6)

continue;

// Alloc memory for contour point set.

PointArray = (CvPoint*)malloc(count*sizeof(CvPoint));

PointArray2D32f= (CvPoint2D32f*)malloc(count*sizeof(CvPoint2D32f));

// Alloc memory for ellipse data.

box = (CvBox2D32f*)malloc(sizeof(CvBox2D32f));

// Get contour point set.

cvCvtSeqToArray(cont, PointArray, CV_WHOLE_SEQ);

// Convert CvPoint set to CvBox2D32f set.

for(int i=0; i<count; i++)

{

PointArray2D32f[i].x = (float)PointArray[i].x;

PointArray2D32f[i].y = (float)PointArray[i].y;

}

// Fits ellipse to current contour.

cvFitEllipse(PointArray2D32f, count, box);

// Draw current contour.

//cvDrawContours(image,cont,CV_RGB(255,255,255),

// CV_RGB(255,255,255),0,1,8,cvPoint(0,0));

if ((box->size.width>min_a)&&(box->size.height>min_b))

{

nEllipses++;

//calculate distance to center

dist_x=tweezer.x-(double)box->center.x;

dist_x=dist_x*dist_x;

dist_y=tweezer.y-(double)box->center.y;

dist_y=dist_y*dist_y;

dist=sqrt(dist_x+dist_y);

B.2 Vision server source code 63

//if better, replace the best so far

if (dist<min_dist){

//printf("DEBUG: entered here");

result.center=box->center;

result.angle=box->angle;

result.size=box->size;

}

}

// Free memory.

free(PointArray);

free(PointArray2D32f);

free(box);

}

if (verbose) {

if (nEllipses>0) printf("%i sphere(s) found. Returning closest one.\n", nEllipses);

else printf("No spheres found.\n");

}

cvReleaseMat(&image);

cvReleaseMat(&image_th);

cvReleaseMemStorage(&stor);

return result; //if none was found all values should be == 0

}

CvPoint2D32f AAAVision::getClosestSphereCenter(int min_a, int min_b,

int threshold , bool verbose)

{

CvPoint2D32f result;

CvBox2D32f sphere = getClosestSphere(min_a,min_b, threshold,verbose);

if (verbose) printf("Sphere center: %f, %f,", sphere.center.x, sphere.center.y);

if (sphere.size.height==0) {

result.x = -1;

result.y = -1;

}

else {

result= sphere.center;

}

return result;

}

/*

* Returns relative distance from the center of a found sphere to the set center

* cordinates of the tweezer in mm. The origin of the used coordinate system lies

* at the upper left corner of the image

* -> the coordinates have to be transformed including the current theta value for

* later use

*/

B.2 Vision server source code 64

CalcDistanceRes AAAVision::getClosestSphereDistance(int min_a, int min_b,

int threshold , bool verbose)

{

CalcDistanceRes result;

CvPoint2D32f center= getClosestSphereCenter(min_a, min_b, threshold , verbose);

if (center.x<0) {

result.success= 0;

if(verbose) printf("AAAVision::getClosestSphereDistance : No sphere found.\n");

return result;

}

result.success=1;

result.x_dist=(center.x-tweezer.x)*pxc.pixellength;

result.y_dist=(center.y-tweezer.y)*pxc.pixellength;

if(verbose) printf("Distance from tweezer CP to sphere center: %f, %f [m].\n",

result.x_dist,result.y_dist);

return result;

}

• PXC controls.h:

/***

| pxc_controls.h |

| |

| AAA Vision package 2.0 |

|---|

| Header file of the pxc_controls class acting as interface between the |

| vision code and the PXC frame grabber card. |

| |

| Context: Vision based pick and place project |

| |

| See also: "Pick and Place in a Minifactory environment", Diploma |

| thesis, Cornelius Niemeyer, ETH Zuerich, 12/2006 |

| |

| |

| |

| |

| (c) 2006 Cornelius Niemeyer, MSL |

| |

|---|

| |

| TARGET PLATFORM: QNX (6.3) |

| |

***/

#ifndef _PXC_CONTROLS_H_

#define _PXC_CONTROLS_H_

#include "cxcore.h"

extern "C" {

B.2 Vision server source code 65

#include "pxc.h"

#include "frame.h"

}

class PXC_Controls{

private:

FRAME __PX_FAR *fgframe;

int SetVideoParameters();

public:

/* structures that hold the function pointers for the libraries */

PXC200 pxc200;

FRAMELIB flib;

//

// fgh is the frame grabber handle

//

unsigned long fgh;

//

// fgframe holds the 2 frame handles while ImageData holds the 2 pointers

//

//DEBUG: THis could cause errors...

void *ImageData;

//unsigned char *ImageData;

int tagQ;

int bAquire;

int modelnumber;

short width, height;

double pixellength;

int ImageBPP; //Bits per pixel

int ImageBPL; //bits per line

PXC_Controls();

~PXC_Controls();

int pxc_init();

int pxc_term();

int setComposite();

int setSVideo();

int PXC_Controls::setCamera(int slot);

void SlantPattern(unsigned char *p, int dx, int dy, int bpp);

FRAME __PX_FAR *grabFrame();

CvMat grabCvImage();

B.2 Vision server source code 66

};

#endif //_PXC_CONTROLS_H_

• PXC controls.cc:

/***

| pxc_controls.cc |

| |

| AAA Vision package 2.0 |

|---|

| Implementation of pxc_controls class acting as interface between the |

| vision code and the PXC frame grabber card. |

| |

| The PXC initialization procedure implemented below woks as follows: |

| 1. Open the PXC and FRAME libraries |

| 2. Allocate a frame grabber |

| 3. Determine the video type |

| - important for determining frame buffer size |

| 4. Get the model number |

| 5. Allocate a frame buffer |

| 6. Get a pointer to the frame buffer |

| |

| |

| Context: Vision based pick and place project, |

| |

| See also: "Pick and Place in a Minifactory environment", Diploma |

| thesis, Cornelius Niemeyer, ETH Zuerich, 12/2006 |

| |

| |

| Partly based on sample code from Imagenation. |

| |

| (c) 2006 Cornelius Niemeyer, MSL |

| |

|---|

| |

| TARGET PLATFORM: QNX (6.3) |

| |

***/

#include <stdio.h>

#include "pxc_controls.h"

#define PIXEL_TYPE PBITS_RGB24

static int videotype;

B.2 Vision server source code 67

PXC_Controls::PXC_Controls()

{

}

PXC_Controls::~PXC_Controls()

{

}

///

// Name: SetVideoParameters

///

int PXC_Controls::SetVideoParameters()

{

//

// Determine the video type

//

videotype = pxc200.VideoType(fgh);

modelnumber = pxc200.GetModelNumber(fgh);

switch(videotype)

{

case 0: /* no video */

printf("WARNING: Videotype not recognised.\n");

width = 0;

height = 0;

return 0;

break;

case 1: /* NTSC */

printf("Video: NTSC / RS-170. \n");

width = 640;

height = 486;

break;

case 2: /* CCIR */

printf("Video: CCIR / PAL. \n ");

width = 768;

height = 576;

break;

}

/*--

The following values control scaling and decimation. For normal frames

they can be set to the height and width of the frame buffer.

--*/

pxc200.SetWidth(fgh, width);

pxc200.SetHeight(fgh, height);

pxc200.SetXResolution(fgh, width);

pxc200.SetYResolution(fgh, height);

return 1;

}

B.2 Vision server source code 68

int PXC_Controls::pxc_init()

{

//

// Open the frame library first

//

if(!FRAMELIB_OpenLibrary(&flib,sizeof(FRAMELIB)))

{

//puts("FrameLib Allocation failed.");

return (0);

}

//

// Open the PXC200 library next

//

if(!PXC200_OpenLibrary(&pxc200,sizeof(PXC200)))

{

//puts("PXC200 OpenLibrary Failed. No frame grabber functions found.");

return (0);

}

//width = FRAME_WIDTH;

//height = FRAME_HEIGHT;

//

// allocate any PXC200

//

fgh = pxc200.AllocateFG(-1);

//

// Get the PXC model number

// And write it to the model number widget

//

modelnumber = pxc200.GetModelNumber(fgh);

switch(modelnumber)

{

case PXC200_LC:

printf("PXC200L Framegrabber recognised.\n");

break;

case PXC200_LC_2:

printf("PXC200AL Framegrabber recognised.\n");

break;

case PXC200_F:

printf("PXC200F Framegrabber recognised.\n");

break;

case PXC200_F_2:

printf("PXC200AF Framegrabber recognised.\n");

break;

B.2 Vision server source code 69

default:

printf("WARNING: Framegrabber model not recognised.\n");

break;

}

//

// Determine the video type

// - this is important for determining the frame buffer size

//

if(!SetVideoParameters())

{

//puts("Set Video Parameters failed");

return 0;

}

//

// Allocate a frame buffer

// Use PBITS_RGB24 for color and PBITS_Y8 for monochrome

//

fgframe = pxc200.AllocateBuffer(width, height, PIXEL_TYPE);

if(fgframe == NULL)

{

//puts("Allocate buffer failed");

return 0;

}

//

// Get a pointer to the frame buffer

//

ImageData = flib.FrameBuffer(fgframe);

//initialise Image Parameters

ImageBPP = ((PIXEL_TYPE & 0xFF)+7) >> 3;

ImageBPL = width * ImageBPP;

return(1);

}

///

// Name: SlantPattern

//

// Put a slant pattern in the buffer. This routine can be used to

// visually verify that a grab occured and that both fields were

// grabbed. This function is not used in this program but it has

// been left here because it can be useful. If you suspect that you

// may be grabbing only a single field, call this function prior to

// each grab. If only one field has been grabbed, you will see a

// ghosting of this slant pattern through your image.

//

///

void PXC_Controls::SlantPattern(unsigned char *p, int dx, int dy, int bpp)

B.2 Vision server source code 70

{

int x, y, i;

// unsigned char *p;

// get a buffer pointer from the frame handle

// p = frame.FrameBuffer(frh);

for(y=0; y<dy; ++y)

for(x=0; x<dx; ++x)

for(i=0; i<bpp; ++i)

*p++ = x+y;

}

///

// Name: pxc_term

///

int PXC_Controls::pxc_term()

{

//

// Wait until other stuff has terminated

// It will have always terminated by the time the library

// returns from this Grab by virtue of the order of operations.

//

pxc200.Grab(fgh, fgframe, 0);

//

// Deallocate the frame

//

if(fgframe)

flib.FreeFrame(fgframe);

//

// Free the FG

//

if(fgh)

pxc200.FreeFG(fgh);

//

// Close the libraries

//

FRAMELIB_CloseLibrary(&flib);

PXC200_CloseLibrary(&pxc200);

return(1);

}

int PXC_Controls::setComposite()

{

B.2 Vision server source code 71

pxc200.SetChromaControl(fgh,NOTCH_FILTER);

return 1;

}

int PXC_Controls::setSVideo()

{

//

// The PXC200L and PXC200AL have S-viseo only on channel 1

//

if(modelnumber == PXC200_LC || modelnumber == PXC200_LC_2)

{

// set the PXC channel to camera 1

pxc200.SetCamera(fgh,1,0);

}

// turn on s-video mode

pxc200.SetChromaControl(fgh,SVIDEO);

return 1;

}

//Grabs a frame

FRAME __PX_FAR *PXC_Controls::grabFrame()

{

pxc200.Grab(fgh, fgframe, 0);

return fgframe;

}

//grabs a frame and coverts it to an OpenCV image

CvMat PXC_Controls::grabCvImage()

{

pxc200.Grab(fgh, fgframe, 0);

//check frame type!

if(PIXEL_TYPE == 0x0218) {

CvMat *image;

image = cvCreateMat(flib.FrameHeight(fgframe),flib.FrameWidth(fgframe),CV_8UC3);

cvInitMatHeader(image,flib.FrameHeight(fgframe),flib.FrameWidth(fgframe),CV_8UC3,

flib.FrameBuffer(fgframe),CV_AUTOSTEP);

return *image;

}else{

printf("CvMat PXC_Controls::grabImage() : Not yet implemented for this type of image.\n");

CvMat i;

return i;

}

}

int PXC_Controls::setCamera(int slot)

{

pxc200.SetCamera(fgh,slot,0);

return 1;

B.3 Vision client example source code 72

}

B.3 Vision client example source code

In the following exaple source code for a vision client application in Python on

the manipulator will be given.

• First the messages to be send have to be defined and registered as e.g. as

follows:

VISION_GET_CLOSEST_SPHERE_MSG = "VISION_GET_CLOSEST_SPHERE_MSG"

VISION_GET_CLOSEST_SPHERE_FMT = ""

VISION_FOUND_CLOSEST_SPHERE_MSG = "VISION_FOUND_CLOSEST_SPHERE_MSG"

VISION_FOUND_CLOSEST_SPHERE_FMT = "{ float, float }"

def setInterface(self, intf, desc, binder, action_list):

#...

self.registerMessage(VISION_GET_CLOSEST_SPHERE_MSG,VISION_GET_CLOSEST_SPHERE_FMT)

self.registerMessage(VISION_FOUND_CLOSEST_SPHERE_MSG,VISION_FOUND_CLOSEST_SPHERE_FMT)

• Then messages can be sent and data extracted from responses as shown in

the following code snippet:

def get_closest_sphere(self):

print "get closest sphere begin"

if self.getVisionProcessor() is None:

print "no vision processor found"

return None

res= self.queryTo(self.visionProcessor,VISION_GET_CLOSEST_SPHERE_MSG, \

None, VISION_FOUND_CLOSEST_SPHERE_MSG)

print "SPHERE:", res[0], res[1]

if res[0] < 0:

return None

return (res[0], res[1])

The message definitions have to be identical at client and server.

B.4 How to extend the vision server

Extend the vision server and client:

Include new vision processing functions in the AAAVision class. The following

example code illustrates how IPT messages are defined, registered and read and

answered in the message handler in the main vision server file vision serv.cc.

When receiving, data will arrive as a struct, even if its only one field.

B.5 Hough transform algorithm testing code 73

#define VISION_GET_CLOSEST_SPHERE_D_MSG "VISION_GET_CLOSEST_SPHERE_D_MSG"

#define VISION_GET_CLOSEST_SPHERE_D_FMT ""

#define VISION_FOUND_CLOSEST_SPHERE_D_MSG "VISION_FOUND_CLOSEST_SPHERE_D_MSG"

#define VISION_FOUND_CLOSEST_SPHERE_D_FMT "{ float, float, int }"

void get_closest_sphere_d_hand(FoContainer* recv, FbMessage* msg, void* data)

{

if (VERBOSE) printf("Entering get_closest_sphere_d_handler.\n");

AAAVision* AV = (AAAVision*) data;

CalcDistanceRes res = AV->getClosestSphereDistance(15,15,130,VERBOSE);

recv->replyTo(msg,VISION_FOUND_CLOSEST_SPHERE_D_MSG, &res);

if (VERBOSE) printf("Distance to closest sphere send back.\n");

}

int main(int argc, char *argv[])

{

...

portal->registerMessage(VISION_GET_CLOSEST_SPHERE_D_MSG,VISION_GET_CLOSEST_SPHERE_D_FMT);

portal->registerMessage(VISION_FOUND_CLOSEST_SPHERE_D_MSG,\

VISION_FOUND_CLOSEST_SPHERE_D_FMT);

portal->addMessageHandler(VISION_GET_CLOSEST_SPHERE_D_MSG,\

new FoRoutineMessageHandler(get_closest_sphere_d_hand, &AV));

...

}

B.5 Hough transform algorithm testing code
• houghcircle.c :

/**

*

*

* This is a test program developed to experiment with the hough transformation

* circle recognition algorithm on specific imgages of small spheres.

*

* Context: Vision based pick and place project, AAA, Minifactory

*

* Version 1.00, 9/19/06

* Authors: Cornelius Niemeyer <cornelius.niemeyer@gmail.com>

* Loosely based on ellipse fitting OpenCv demo program by Denis Burenkov.

*

* See also: "Pick and Place in a Minifactory environment", Diploma thesis,

* Cornelius Niemeyer, ETH Zuerich, 12/2006

*

* (c) 2006 MSL,CMU

B.5 Hough transform algorithm testing code 74

*

**/

#ifdef _CH_

#pragma package <opencv>

#endif

#ifndef _EiC

#include "cv.h"

#include "highgui.h"

#include <stdio.h>

#endif

int slider_pos1 = 70;

int slider_pos2 = 70;

int slider_pos3 = 100;

// Load the source image. HighGUI use.

IplImage *image02 = 0, *image03 = 0, *image04=0,*image05=0, *image06=0;

void process_image(int h);

void drawCross(CvArr* img, CvPoint center,double length_x, double length_y, \

CvScalar color, int thickness, int line_type);

int main(int argc, char** argv)

{

const char* filename = argc == 2 ? argv[1] : (char*)"/4.bmp";

const char* filename2 =(char*)"/4r.bmp";

const char* filename3 =(char*)"/4r_b.bmp";

// load image and force it to be grayscale

if((image03 = cvLoadImage(filename, 0)) == 0)

return -1;

// Create the destination images

image02 = cvCloneImage(image03);

//image04 = cvCloneImage(image03);

if((image04 = cvLoadImage(filename, -1)) == 0)

return -1;

image05=cvCloneImage(image04);

image06=cvCloneImage(image04);

// Create windows.

cvNamedWindow("Source", 1);

cvNamedWindow("Result", 1);

cvNamedWindow("SourRes", 1);

cvNamedWindow("Threshhold", 1);

// Show the image.

cvShowImage("Source", image03);

B.5 Hough transform algorithm testing code 75

// Create toolbars. HighGUI use.

cvCreateTrackbar("Param1", "Result", &slider_pos1, 400, process_image);

cvCreateTrackbar("Param2", "Result", &slider_pos2, 400, process_image);

cvCreateTrackbar("Threshhold", "Threshhold", &slider_pos3, 255, process_image);

process_image(0);

// Wait for a key stroke; the same function arranges events processing

cvWaitKey(0);

cvSaveImage(filename2, image05);

cvSaveImage(filename3, image04);

cvReleaseImage(&image02);

cvReleaseImage(&image03);

cvReleaseImage(&image04);

cvReleaseImage(&image05);

cvReleaseImage(&image06);

cvDestroyWindow("Source");

cvDestroyWindow("Result");

cvDestroyWindow("SourRes");

cvDestroyWindow("Threshhold");

return 0;

}

// Define trackbar callback functon. This function find contours,

// draw it and approximate it by ellipses.

void process_image(int h)

{

CvMemStorage* stor;

cvZero(image02);

// Create dynamic structure and sequence.

stor = cvCreateMemStorage(0);

cvThreshold(image03, image02, slider_pos3, 255, CV_THRESH_BINARY);

cvShowImage("Threshhold", image02);

CvSeq* circles = cvHoughCircles(image02, stor, CV_HOUGH_GRADIENT, 2, \

image03->height/10, slider_pos1, slider_pos2);

cvZero(image04);

image05=cvCloneImage(image06);

printf("%i circles recognised",circles->total);

int i;

for(i = 0; i < circles->total; i++)

{

C Vision Demo 76

float* p = (float*)cvGetSeqElem(circles, i);

cvCircle(image04, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, \

CV_RGB(0,255,0), -1, 8, 0);

cvCircle(image04, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), \

CV_RGB(255,0,0), 3, 8, 0);

cvCircle(image05, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, \

CV_RGB(0,255,0), -1, 8, 0);

cvCircle(image05, cvPoint(cvRound(p[0]),cvRound(p[1])), cvRound(p[2]), \

CV_RGB(255,0,0), 3, 8, 0);

}

// Show image. HighGUI use.

cvShowImage("Result", image04);

cvShowImage("SourRes", image05);

}

void drawCross(CvArr* img, CvPoint center,double length_x, double length_y, \

CvScalar color, int thickness, int line_type)

{

//horizontal line

CvPoint pt1=cvPoint(center.x-cvRound(length_x*0.5),center.y);

CvPoint pt2=cvPoint(center.x+cvRound(length_x*0.5),center.y);

cvLine(img, pt1, pt2,color,thickness,line_type, 0);

//vertical line

pt1=cvPoint(center.x,center.y-cvRound(length_y*0.5));

pt2=cvPoint(center.x,center.y+cvRound(length_y*0.5));

cvLine(img, pt1, pt2,color,thickness,line_type, 0);

}

#ifdef _EiC

main(1,"houghcircle.c");

#endif

C Vision Demo

C.1 .fac file

• visionDemo.fac :

file base_frame.aaa {

children {

file lg_platen.aaa {

C.1 .fac file 77

name P1

matrix [1 0 0 0 0 1 0 0 0 0 1 0 0 0 570 1]

}

cached vole ipt:vole|1400,interface {

name Vole

matrix [1 0 0 0 0 1 0 0 0 0 1 0 450 -330 655 1]

program {

from VisionDemoCourierProgram import VisionDemoCourierProgram

program = VisionDemoCourierProgram()

}

member home {

matrix [1 0 0 0 0 1 0 0 0 0 1 0 -450 330 15 1]

children {

}

}

member motor {

matrix [1 0 0 0 0 1 0 0 0 0 1 0 179.503 -441.91 0 1]

children {

}

}

}

file bridge.aaa {

CHANGE POINT: change the y value below to move the bridge along the frame

matrix [1 0 1.77745e-15 0 0 1 0 0 -1.77745e-15 0 1 0 5.57899e-05 -211.45 \

920 1]

member crossbar {

CHANGE_POINT: increasing the z value below makes the manipulator go more \

shallowly (moves the bridge up and down)

matrix [1 0 0 0 0 1 1.46125e-15 0 0 -1.46099e-15 1 0 -3.57628e-05 \

1.89761e-06 130 1]

children {

cached puma ipt:puma|1400,interface {

cached panther ipt:panther|1400,interface {

name Panther

CHANGE POINT: change the x value below to move the manipulator

side to side on bridge

matrix [-0.999994 2.16463e-09 1.54238e-16 0 4.23855e-08 -0.999993 \

6.98763e-22 0 5.03578e-14 -1.82624e-13 1 0 -4.8 -39.9999 \

9.53675e-07 1]

program {

from VisionDemoManipProgram import VisionDemoManipProgram

program = VisionDemoManipProgram()

}

member effectorLink {

children {

}

}

member base {

CHANGE POINT: change the z value below to move the base up and

C.2 Manipulator program 78

down on the manipulator (crank it)

matrix [1 0 0 0 0 1 0 0 0 0 1 0 0 0 60 1]

children {

}

}

}

}

}

}

}

}

file outercornercurb.aaa {

matrix [-8.84336e-08 1 2.82723e-15 0 -1 -8.83553e-08 3.40823e-08 0 3.40823e-08 \

-4.51566e-12 1 0 -297 -600 577.25 1]

}

file outercornercurb.aaa {

matrix [-1 1.5353e-09 4.59664e-17 0 5.53562e-10 -1 7.18114e-15 0 1.56768e-16 \

-2.12542e-14 1 0 300 -596.5 577.25 1]

}

file outercornercurb.aaa {

matrix [1 0 0 0 0 1 0 0 0 0 1 0 -300 596.5 577.25 1]

}

file outercornercurb.aaa {

matrix [9.05718e-08 -1 -1.236e-15 0 1 9.57624e-08 3.41116e-08 0 -3.42113e-08 \

3.87845e-09 1 0 297 600 577.25 1]

}

file shortcurb.aaa {

matrix [1 0 0 0 0 1 0 0 0 0 1 0 0 -603.5 577.25 1]

}

file shortcurb.aaa {

matrix [-1 -2.92803e-07 -6.61493e-09 0 2.14959e-10 -0.999999 -1.14458e-15 0 \

-1.86728e-08 -2.04577e-08 0.999999 0 -1.34161e-05 603.5 577.25 1]

}

C.2 Manipulator program

• VisionDemoManipProgram.py :

from DemoManipProgram import DemoManipProgram

import math

MAX_SEARCH_STEPS_X = 5

MAX_SEARCH_STEPS_Y = 2

SEARCH_STEPSIZE_X = 2.07

SEARCH_STEPSIZE_Y = 1.5

APPROACH_TOL_X=0.00003

APPROACH_TOL_Y=0.00003 #evtl zu klein

DEFAULT_TH = (1-(8.0/180.0))*math.pi

SAFE_Z = -5

C.2 Manipulator program 79

CLOSE_Z=-75.0 #-75.50

TOUCH_Z=-75.90 #-75.70

z_marg=1.0

POS1_Y = -434.115 # -0.033 #-0.275#in Courier position coordinate system

POS1_X = -130.885 # 0.335 #+0.0275 #in Courier position coordinate system

TARGET_Y =POS1_Y #-27.5 #in Courier position coordinate system

TARGET_X =POS1_X +3.0 #+27.5 #in Courier position coordinate system

TELL_COURIER_TO_COORDINATE_MSG="TELL_COURIER_TO_COORDINATE_MSG"

TELL_COURIER_TO_COORDINATE_FMT="{ float, float }"

TELL_COURIER_MOVE_TO_MSG="TELL_COURIER_MOVE_TO_MSG"

TELL_COURIER_MOVE_TO_FMT="{ float, float }"

COURIER_MOVED_TO_MSG="COURIER_MOVED_TO_MSG"

COURIER_MOVED_TO_FMT="int"

class VisionDemoManipProgram(DemoManipProgram):

def __init__(self):

DemoManipProgram.__init__(self)

self.registerMessage(TELL_COURIER_TO_COORDINATE_MSG, \

TELL_COURIER_TO_COORDINATE_FMT)

self.registerMessage(TELL_COURIER_MOVE_TO_MSG,TELL_COURIER_MOVE_TO_FMT)

self.registerMessage(COURIER_MOVED_TO_MSG,COURIER_MOVED_TO_FMT)

def bind(self):

DemoManipProgram.bind(self)

self.courier = self.bindAgent("Vole")

def searchCurrentArea(self):

res = None

if self.simulated is not 1:

res = self.get_closest_sphere_dist()

if self.simulated is 1:

res=[-0.000653, 0.000584]

print "gave false values back"

if res is None:

return None

else:

return res

def searchForSphere(self):

found=0

#initial_x=self.courier_intf.pos[0]

#initial_y=self.courier_intf.pos[1]

C.2 Manipulator program 80

initial_x=POS1_X

initial_y=POS1_Y

manipdown=0

target_x=initial_x

target_y=initial_y

for steps_y in range(MAX_SEARCH_STEPS_Y):

for steps_x in range(MAX_SEARCH_STEPS_X-1):

res=self.searchCurrentArea()

if res is not None :

found =1

break

print "range x",steps_x

print "range y",steps_y

target_x=initial_x-(steps_x+1)*SEARCH_STEPSIZE_X

target_y=initial_y-(steps_y)*SEARCH_STEPSIZE_Y

#self.sendTo(self.courierObject,TELL_COURIER_TO_COORDINATE_MSG,\

(target_x,target_y))

moved = self.queryTo(self.courierObject,TELL_COURIER_MOVE_TO_MSG,\

(target_x,target_y), COURIER_MOVED_TO_MSG)

#status = self.acceptCoordination(self.partner, CLOSE_Z, DEFAULT_TH)

#if not status:

raise Exception(rendezvous_name, ’Failed to coordinate’)

print "Courier response: ", moved

if moved is not 1:

raise Exception(rendezvous_name, ’Error: Courier failed to move.’)

if manipdown is 0:

self.singleStep(CLOSE_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

manipdown=1

self.sleep(2)

if found is 1:

break

self.current_x=target_x

self.current_y=target_y

if found is 0:

return None

return res

def approachSphere(self, sphereDist):

#with appropriate DEFAULT_TH (make the job easier) and Courier

#initialisation

counter =0

while abs(sphereDist[0]) >= APPROACH_TOL_X or abs(sphereDist[1]) >= \

APPROACH_TOL_Y:

counter=counter+1

target_x= self.courier_intf.pos[0] - 1000.0*sphereDist[0]

target_y= self.courier_intf.pos[1] + 1000.0*sphereDist[1]

C.2 Manipulator program 81

print "current position", self.current_x, self.current_y

print "approaching target: sending move to:", target_x, target_y

moved = self.queryTo(self.courierObject,TELL_COURIER_MOVE_TO_MSG, \

(target_x,target_y), COURIER_MOVED_TO_MSG)

print "Courier response: ", moved

if moved is not 1:

raise Exception(rendezvous_name, ’Error: Courier failed to move.’)

sphereDist=self.searchCurrentArea()

self.sleep(0.2)

if self.simulated is 1:

sphereDist=[APPROACH_TOL_X,APPROACH_TOL_Y]

if sphereDist is None:

print "Lost sphere!!!!"

return None

if counter >5:

print "Could not get near enough to the sphere"

return 1

return 1

def run(self):

self.initializeExecutor()

print "program started"

self.bind()

self.courier_intf = self.courier.getInterface()

self.courierObject=self.getProgramObject(self.courier_intf)

self.setDIO(0)

self.singleStep(SAFE_Z-z_marg-10, 0, z_margin=z_marg)

self.sleep(1)

self.singleStep(SAFE_Z-z_marg-10, DEFAULT_TH, z_margin=z_marg)

self.sleep(1)

rendezvous_name = "test"

self.partner = self.acceptRendezvous(rendezvous_name)

sphereDist=self.searchForSphere()

if sphereDist is None:

print "No Sphere found in search."

return

if self.approachSphere(sphereDist) is 1:

#move down

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

C.3 Courier program 82

#pick up

self.setDIO(4) #adapt this number

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

self.sleep(0.2)

self.setDIO(5) #adapt this number

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

self.sleep(0.1)

self.setDIO(6) #adapt this number

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

self.sleep(0.2)

self.setDIO(7) #adapt this number

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

#move up

self.singleStep(CLOSE_Z-z_marg+2.0, DEFAULT_TH, z_margin=z_marg)

#move courier to target

self.sleep(4.0)

moved = self.queryTo(self.courierObject,TELL_COURIER_MOVE_TO_MSG,\

(TARGET_X,TARGET_Y), COURIER_MOVED_TO_MSG)

print "Courier response: ", moved

if moved is not 1:

raise Exception(rendezvous_name, ’Error: Courier failed to move.’)

#move down

self.sleep(4.0)

self.singleStep(CLOSE_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

#place

self.singleStep(TOUCH_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

#self.sleep(0.2)

#self.truncate()

self.setDIO(4)

self.singleStep(TOUCH_Z-z_marg+0.3, DEFAULT_TH, z_margin=z_marg)

self.sleep(0.2)

#Admire the work for the cameras ;-)

self.setDIO(0)

self.singleStep(CLOSE_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

self.sleep(4)

#control placement (?)

#wiggle(?)

#move up

self.singleStep(SAFE_Z-z_marg, DEFAULT_TH, z_margin=z_marg)

#terminate RDVZ

self.finishRendezvous()

while 1:

self.sleep(1.0)

C.3 Courier program

• VisionDemoCourierProgram.py :

C.3 Courier program 83

from DemoCourierProgram import DemoCourierProgram

from FoDescription import FoDescriptionPtr

from FbMessage import FbMessagePtr

TELL_COURIER_TO_COORDINATE_MSG="TELL_COURIER_TO_COORDINATE_MSG"

TELL_COURIER_TO_COORDINATE_FMT="{ float, float }"

TELL_COURIER_MOVE_TO_MSG="TELL_COURIER_MOVE_TO_MSG"

TELL_COURIER_MOVE_TO_FMT="{ float, float }"

COURIER_MOVED_TO_MSG="COURIER_MOVED_TO_MSG"

COURIER_MOVED_TO_FMT="int"

class VisionDemoCourierProgram(DemoCourierProgram):

def __init__(self):

DemoCourierProgram.__init__(self)

self.registerMessage(TELL_COURIER_TO_COORDINATE_MSG,TELL_COURIER_TO_COORDINATE_FMT)

self.addMessageHandler(TELL_COURIER_TO_COORDINATE_MSG, self.tell_courier_to_coord_handler)

self.registerMessage(TELL_COURIER_MOVE_TO_MSG,TELL_COURIER_MOVE_TO_FMT)

self.registerMessage(COURIER_MOVED_TO_MSG,COURIER_MOVED_TO_FMT)

self.addMessageHandler(TELL_COURIER_MOVE_TO_MSG, self.tell_courier_move_to_handler)

def bind(self):

DemoCourierProgram.bind(self)

self.manip = self.bindAgent("Panther")

def setHome(self, xdir, ydir, xoffset=0, yoffset=0):

"""Set the courier’s position to the left/right (-/+), top/bottom (+/-)

corner of the platen, offset by xoffset and yoffset millimeters. This

method will do nothing when not running on a courier head"""

#Implemented by Jay Gowdy and Christoph Bergler

get the point we will be "homing" to. Presumably the courier

is jammed into this corner

pright, ptop, pleft, pbot, pz = self.platen.getCorners()

if xdir < 0:

px = pleft

else:

px = pright

if ydir < 0:

py = pbot

else:

py = ptop

px = px + xoffset;

py = py + yoffset;

now figure out how to move the courier’s reported position to match

C.3 Courier program 84

with us being in this corner

cur_pos = self.interface.pos

currentx = cur_pos[0]

currenty = cur_pos[1]

home = FoDescriptionPtr(self.description.home)

plattrans = self.platen.getPlaten().getMatrix(home).getTranslation()

xoff = (px+plattrans[0])-(currentx-self.description.footprint[2]*xdir)

print "X position is %f, will move X offset by %f" % (currentx, xoff)

yoff = (plattrans[1]+py)-(currenty-self.description.footprint[3]*ydir)

cornery = currenty-self.description.footprint[3]*ydir

print "Y position is %f, will move X offset by %f" % (currenty, yoff)

and set the interface.transform field, which is a field only of real

couriers that transforms the rawPos field into the pos field

t = self.interface.transform

t[12] = t[12] + xoff

t[13] = t[13] + yoff

self.interface.transform = t

self.interface.homed = 1

def tell_courier_to_coord_handler(self, container, msg):

print "Recieved order to initiate coordinated movement."

res=self.getData(msg)

print "recieved: ", res[0], res[1]

self.coordinateTo(self.manip_object, res[0], res[1])

print "Finishing Coordination"

def tell_courier_move_to_handler(self, container, msg):

print "Recieved order to initiate movement."

res=self.getData(msg)

print "Target recieved: ", res[0], res[1]

self.singleStep((res[0], res[1],0))

print "Finishing move"

self.replyTo(FbMessagePtr(msg), COURIER_MOVED_TO_MSG, 1)

def run(self):

print "program started"

self.bind()

self.setHome(1, -1, -27.5, 27.5)

manip_intf = self.manip.getInterface()

self.manip_object = self.getProgramObject(manip_intf)

place_rendezvous= "test"# to be determined

print "Initiating"

self.initiateRendezvous(self.manip, place_rendezvous)

while 1:

D Tweezer gripper 85

self.processEvents()

#possibly include event to terminate RDVZ

self.finishRendezvous(place_rendezvous)

self.singleStep((28, 28),max_v=0.05, max_acc=0.05)

while 1:

self.sleep(0.2)

D Tweezer gripper

D.1 Voice coil data

Voice coil data sheets can be found on the included DVD at:

/Hardware/Gripper/voicecoil/

D.2 Tweezer control card

Figure 27: Schematic tweezer card pin mapping

The LMD18425 datasheet can be found on the included DVD at:

/Hardware/Gripper/card/LMD18245.pdf

D.3 Changed manipulator code 86

D.3 Changed manipulator code

These files were changed in order to be able to actuate the tweezer gripper. The

files can be found on the attached DVD.

agent/new_vision/Demo/DemoManipProgram.py

agent/src/AAA/tool/FoSimManipulatorInterface.cc

agent/src/AAA/tool/FoManipMoveToController.cc

agent/src/AAA/tool/Types.py

agent/src/AAA/tool/FoManipMoveToController.h

agent/src/AAA/manip/ManipActions.cc

agent/src/AAA/manip/ExecutorInterface.h

agent/src/AAA/manip/maniphead.cc

agent/src/AAA/manip/ExecutorInterface.cc

agent/src/AAA/manip/ManipControllers.h

agent/src/AAA/manip/FbManipulatorHead.h

agent/src/AAA/include/AAA/interfacing/FoManipulatorInterface.h

agent/src/AAA/agent/FoManipulatorInterface.cc

agent/mini/agent/ohm-exec/actuator/actuator.c

agent/mini/agent/ohm-exec/interface/cbq_srv.

agent/mini/agent/ohm-exec/interface/log_srv.c

agent/mini/agent/ohm-exec/interface/cbq_if.h

agent/mini/agent/ohm-exec/interface/log_if.h

agent/mini/agent/ohm-exec/control/control_if.h

agent/mini/agent/ohm-exec/control/control.c

E Manipulator documentation 87

E Manipulator documentation

E.1 Modified valve manifold support

E.2 Pin description tables 88

E.2 Pin description tables

Table 8: OHM digital I/O IP408 bit/Pin mapping.
Signal Bit number Pin Pin end effector
Z limit top 0 1
Z limit bottom 1 2
beacon 0 2 3
beacon 1 3 4
DIO1 (Light) 4 6 3
DIO2 5 7 4
axis 0/Z amp AOK 8 11
axis 1/th amp AOK 12 16
axis 0/Z amp enable 16 21
axis 1/th amp enable 17 22
DIO3 18 23 5
DIO4 19 24 8
DIO5 (EEPROM DATA) 20 26 9
DIO6 (EEPROM CLOCK) 21 27 10
gripper vacuum 0 24 31
gripper pressure 0 25 32
gripper vacuum 1 26 33
gripper pressure 1 27 34
gripper vacuum 2 28 36
gripper pressure 2 29 37
grav valve 30 38
brake valve 31 39

E.2 Pin description tables 89

E.2 Pin description tables 90

	Abstract
	Zusammenfassung
	List of Tables
	List of Figures
	Introduction
	The Agile Assembly Architecture
	Minifactory
	Overhead Manipulator
	Courier
	Interface tool
	Programming Minifactory agents
	Setting up a working system

	OSTI-Project: Assembly of a telescopic sight
	Task analysis
	Hardware
	Factory programming
	Picking up
	Placing
	Screwing
	Experimental results

	Vision based pick and place
	Task analysis
	Hardware
	End effector control
	Vision software module
	Experimental results

	Summary and Contributions
	Future Work

	References
	OSTI software modules
	Pick up
	Place
	Screw

	Vision
	How to set up the vision system
	Vision server source code
	Vision client example source code
	How to extend the vision server
	Hough transform algorithm testing code

	Vision Demo
	.fac file
	Manipulator program
	Courier program

	Tweezer gripper
	Voice coil data
	Tweezer control card
	Changed manipulator code

	Manipulator documentation
	Modified valve manifold support
	Pin description tables

