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Abstract— This paper presents a hybrid control strategy
for navigation of shape-accelerated underactuated balancing
systems with dynamic constraints. It extends the concept of se-
quential composition to perform discrete state-based switching
between asymptotically convergent control policies to produce
a globally asymptotically convergent feedback policy. The
individual control policies consists of an external trajectory
planner, a shape trajectory planner, an external trajectory
tracking controller and a balancing controller. The paper also
presents an integrated planning and control procedure, wherein
standard graph-search algorithms are used to plan for the
sequence of control policies that will help the system achieve
a navigation goal. Simulation results of the 3D ballbot system
navigating an environment with static obstacles to reach the
goal position are also presented.

I. INTRODUCTION

Underactuated mechanical systems are systems with fewer
control inputs than the degrees of freedom [1]. In robotics,
balancing (dynamically stable) mobile robots form a special
class of underactuated systems. They include wheeled robots
like Segway [2], ballbots [3] and legged robots. Balancing
robots will play a vital role in realizing the dream of
placing robot workers in human environments by virtue of
their small footprints and high centers of gravity. Among
wheeled balancing systems, ballbots have the advantage
of omnidirectional motion that make them more suitable
for operation in constrained spaces. These omnidirectional
balancing systems, referred to asshape-accelerated under-
actuated balancing systems[4], are of interest here. The
interesting and troubling factor in control and planning
for such underactuated systems is the constraint on their
dynamics by virtue of underactuation. These constraints
are second-order nonholonomic [5] constraints,i.e., non-
integrable acceleration/dynamic constraints, which restrict
the family of trajectories the configurations can follow.
Underactuated balancing systems that are destabilized by
gravitational forces have to maintain balance, which makes
it difficult to track desired configuration trajectories.

Traditionally, motion planning and control for mobile
robots have been decoupled. Robot motion planning proce-
dures, generally, account for obstacles in the environment
and workspace constraints but do not account for the system
dynamics and the constraints on them. They also do not
have any knowledge of the details of the controller that is
used to achieve these motion plans. On the other hand, the
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controller does not have any knowledge of the workspace
constraints and obstacles in the environment. Though it is
possible to make dynamic, underactuated balancing systems
navigate environments using these decoupled procedures,
they are often sub-optimal and result in jerky motions,
where the controller is fighting with the dynamics of the
system to move it around. Moreover, when disturbed, these
procedures often either result in collision with the obstacles
or drive the system unstable. In order to achieve robust,
smooth and collision-free motions, an integrated planning
and control procedure is necessary, where both the planner
and the controller understand the system dynamics and also
understand each other’s details.

A. Related Work

In the last decade, there has been a large body of work
on hybrid control techniques that will avoid decoupling
between planners and controllers.Sequential composition,
introduced in [6], is a controller composition technique that
connects a palette of controllers and automatically switches
between them to generate a globally convergent feedback
policy. This technique was successfully applied to a variety
of systems [7], [8], [9], [10]. In [11],sequential composition
was extended to produce an integrated planning and control
procedure to achieve global navigation objectives for convex-
bodied wheeled mobile robots navigating amongst static
obstacles.

B. Contributions of the Paper

This paper presents a hybrid control framework for navi-
gation of shape-accelerated underactuated balancing systems.
Sequential composition[6] is used to discretely switch be-
tween individual, asymptotically convergent control policies
to produce a globally, asymptotically convergent feedback
control policy that will achieve the overall navigation goal.
The individual control policies are a combination of local
planners and controllers, as will be described in Sec. IV.
The local planner plans shape trajectories that account forthe
dynamic constraints of the system in order to effectively track
desired external configuration trajectories [12], [4]. Graph-
search algorithms likeA∗ are used as a high-level planner
to plan for the sequence of control policies that will help
the system achieve the navigation goal. This paper primarily
focuses on the ballbot [3] and simulation results on a 3D
model are presented in Sec. V.



II. UNDERACTUATED MECHANICAL SYSTEMS

The forced Euler-Lagrange equations of motion for a
mechanical system are:

d
dt

∂L

∂ q̇
−

∂L

∂q
= F(q)τ , (1)

where, q ∈ R
n is the configuration vector,L (q, q̇) =

K(q, q̇)−V(q) is the Lagrangian with kinetic energyK and
potential energyV, τ ∈ R

m is the control input andF(q) is
the force matrix.

A mechanical system satisfying Eq. 1 is said to be an
underactuated system[1] if m < n, i.e., there are fewer
independent control inputs than configuration variables. Eq. 1
for an underactuated system can be written in matrix form
as follows:

M(q)q̈+C(q, q̇)q̇+G(q) = F(q)τ , (2)

where,M(q) is the inertia matrix,C(q, q̇) is the matrix of
Coriolis and centrifugal terms andG(q) is the vector of
gravitational forces.

The configuration variables that appear in the inertia
matrix are calledshape variables(qs), whereas, the config-
uration variables that do not appear in the inertia matrix are
called external variables(qx), i.e., ∂M(q)/∂qx = 0. Eq. 2
can be re-written as:
[

Mxx(qs) Mxs(qs)
Msx(qs) Mss(qs)

][

q̈x

q̈s

]

+

[

hx(q, q̇)
hs(q, q̇)

]

=

[

Fx(q)
Fs(q)

]

τ , (3)

where,h(q, q̇) = [hx(q, q̇),hs(q, q̇)]T is:
[

hx(q, q̇)
hs(q, q̇)

]

=

[

Cxx(q, q̇) Cxs(q, q̇)
Csx(q, q̇) Css(q, q̇)

][

q̇x

q̇s

]

+

[

Gx(q)
Gs(q)

]

.

(4)
The underactuated systems can be classified based on

whether the shape variablesqs are fully actuated, partially
actuated or unactuated and based on the presence or lack of
input couplings in the force matrixF(q) [13].

A. Shape-Accelerated Underactuated Balancing Systems

This paper focuses on shape-accelerated underactuated
balancing systems [4], which form a special class of under-
actuated systems with the following properties: (i) the shape
variables are unactuated and there is no input coupling, say,
F(q) = [Im,0]T ; (ii ) there are equal number of actuated and
unactuated variables,i.e., n= 2m; (iii ) h(q, q̇) is independent
of both qx and q̇x. These properties result in equations
of motion that are symmetric with respect to the external
variables and their first derivatives (qx, q̇x). More properties
for such systems can be found in [4].

The shape-accelerated underactuated balancing systems
have equations of motion of the form:

[

Mxx Mxs(qs)
Msx(qs) Mss(qs)

][

q̈x

q̈s

]

+

[

hx(qs, q̇s)
hs(qs, q̇s)

]

=

[

τ
0

]

, (5)

where,
[

hx(qs, q̇s)
hs(qs, q̇s)

]

=

[

0 Cxs(qs, q̇s)
0 Css(qs, q̇s)

][

q̇x

q̇s

]

+

[

0
Gs(qs)

]

. (6)

We can see from Eq. 5 that the equations of motion of
these systems are functions of ( ¨qx,qs, q̇s, q̈s) and are inde-
pendent ofqx and q̇x. Some examples of shape-accelerated
underactuated balancing systems are planar and 3D cart-
pole system with unactuated lean angles, planar wheeled
inverted pendulum (e.g., Segway [2] in a plane) and 3D
omnidirectional wheeled inverted pendulum (e.g., the ballbot
[14], [12]).
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Fig. 1. (a) The ballbot balancing, (b) Planar ballbot model with ball and
body configurations shown.

B. The Ballbot

The ballbot (Fig. 1(a)) is a 3D omni-directional wheeled
inverted pendulum robot. It can be modeled as a rigid cylin-
der on top of a rigid sphere with the following assumptions:
(i) there is no slip between the ball and the floor, and (ii ) there
is no yaw/spinning motion for both the ball and the body,
i.e., they have 2-DOF each. For the 3D ballbot model, the
ball angles (θx,θy), which are algebraically related to the ball
position (xw,yw), constitute the external variables, whereas
the body angles (φx,φy) constitute the shape variables.

III. SHAPE TRAJECTORY PLANNING AND
CONTROL

The second set ofm equations of motion associated with
the unactuated shape variables in Eq. 5 given by

Msx(qs)q̈x+Mss(qs)q̈s+hs(qs, q̇s) = 0, (7)

which can be written as:

Θ(qs, q̇s, q̈s, q̈x) = 0. (8)

Eq. 7 and Eq. 8 are calledsecond-order nonholonomic
constraints, or dynamic constraintsbecause there exists no
function Ψ such that Ψ̈ = Θ(qs, q̇s, q̈s, q̈x). The dynamic
constraint equations are not even partially integrable,i.e.,
they cannot be converted into first-order nonholonomic con-
straints. This is ensured by the fact that the gravitational
vector G(qs) is not a constant and the inertia matrixM(qs)
is dependent on the unactuated shape variablesqs. For a
detailed discussion of these conditions, refer to [15].



A. Optimal Shape Trajectory Planner

In underactuated balancing systems, we are often inter-
ested in tracking desired trajectories for the external variables
without losing balance. Shape-accelerated underactuatedbal-
ancing systems in Sec. II-A have constraints on the accel-
eration of these external variables w.r.t. the shape variables’
position, velocity and acceleration as given below:

q̈x = −Msx(qs)
−1(Mss(qs)q̈s+hs(qs, q̇s))

= Γ(qs, q̇s, q̈s). (9)

It is to be noted that Eq. 9 holds only ifMsx(qs)
−1 exists,

which it does in the neighborhood of the origin, a property
of shape-accelerated underactuated balancing systems [4].

Using a= (qs, q̇s, q̈s) andb= q̈x, Eq. 8 can be written as
Θ(a,b) = 0. Taking the Jacobian w.r.t.b at (a,b) = (0,0)
yields

∂Θ(a,b)
∂b

|(a,b)=(0,0) = Msx(qs)|qs=0 (10)

From properties of shape-accelerated underactuated balanc-
ing systems [4], the Jacobian in Eq. 10 exists and is invert-
ible. Hence, by the implicit function theorem, there existsa
map Γ : a→ b such thatΘ(a,Γ(a)) = 0, which can be seen
from Eq. 9. Again from the implicit function theorem, the
map Γ is not invertible since the Jacobian∂Θ(a,b)/∂a at
(a,b) = (0,0) exists but is not invertible.

In order to track a non-constant, time-varying ¨qd
x(t),

there is no function that maps ¨qd
x(t) to (qd

s(t), q̇
d
s(t), q̈

d
s(t))

such that the dynamic constraints in Eq. 8 are satisfied.
So, it is desirable to plan shape configuration trajectories
(qp

s(t), q̇
p
s(t), q̈

p
s(t)), which when tracked will result in ap-

proximate tracking of ¨qd
x(t). Here, a linear mapKqx : q̈d

x → qp
s

is proposed such that

Kqx = argmin
K

‖Γ(Kq̈d
x(t),K

...
qd

x(t),K
....
q d

x(t))− q̈d
x(t)‖

2
2. (11)

Here, the planned shape trajectories(qp
s(t), q̇

p
s(t), q̈

p
s(t)) =

(Kq̈d
x(t),K

...
qd

x(t),K
....
q d

x(t)).
The shape trajectory planning procedure is now an opti-

mization problem with the objective of finding the elements
of Kqx such that theL2-norm of the error in tracking ¨qd

x(t)
is minimized. It is to be noted that the parameter space is
m2-dimensional and any optimization algorithm that solves
nonlinear least-squares problem can be used.

A good initial guess forKqx is obtained from the dynamic
constraint given by Eq. 9 with(q̇s, q̈s) = (0,0). In this case,
Eq. 9 reduces to

q̈x = −Msx(qs)
−1Gs(qs) (12)

in the neighborhood of the origin. Jacobian linearization of
Eq. 12 w.r.t.qs at qs = 0 gives

q̈x =

[

−
∂ (Msx(qs)

−1Gs(qs))

∂qs
|qs=0

]

qs

= K̂qsqs, (13)

andK̂qx = K̂−1
qs

. The inverse,K̂−1
qs

, exists in the neighborhood
of the origin due to the properties of shape-accelerated

underactuated systems [4]. For a desired constant acceler-
ation trajectory,Kqx = K̂qx ensures optimality, but for any
general ¨qd

x(t), Kqx = K̂qx provides a good initial guess for
the optimization process. It is to be noted that the optimality
here is in tracking error and not in time or path length.

In design of the optimal shape trajectory planner described
above, the objective has been approximate tracking of ¨qd

x(t),
but in reality, it would be desirable to track someqd

x(t).
Under the current procedure, this is possible only if the
initial conditions for the external variables are met. In
order to approximately track a desired external configuration
trajectory qd

x(t) using the optimal shape trajectory planner
described above, the follow conditions must hold: (i) qd

x(t)
must be of at least ofclass C2, i.e., q̇d

x(t) and q̈d
x(t) exist

and are continuous; (ii ) initial conditions for the external
variables are met,i.e., qp

x(0) = qd
x(0) and q̇p

x(0) = q̇d
x(0). It

is to be noted thatqd
x(t) is preferred to be ofclass C4 so that

the first four derivatives exist and are continuous.

B. Balancing and Trajectory Tracking Control

The shape trajectory planning procedure, described in
Sec. III-A, assumes that there exists a balancing controller,
which has good shape trajectory tracking performance. Sim-
ilar to [14], [12], this work uses a linear PID controller
(Eq. 14) as the balancing controller.

τ(t) = βp(qs(t)−qd
s(t))+βi

∫

(qs(t)−qd
s(t))

+βd(q̇s(t)− q̇d
s(t)), (14)

where,βp, βi , βd are the proportional, integral and derivative
gains respectively.
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Fig. 2. Control Architecture.

The combination of the balancing controller and the op-
timal shape trajectory planner provides good approximate
tracking of the desired external configuration trajectories
under idealized conditions. However, an external trajectory
tracking controller is required to achieve tracking in more
realistic conditions such as different initial conditions, un-
modeled dynamics and disturbances. In this work, a linear
PD controller (Eq. 15) is used as the external trajectory
tracking controller.

qd
s(t) = qp

s(t)+qc
s(t),

qc
s(t) = γp(qx(t)−qd

x(t))+ γd(q̇x(t)− q̇d
x(t)), (15)



where, γp, γd are the proportional and derivative gains
respectively.

The resulting control architecture (Fig. 2) has been shown
to work well on the experimental ballbot setup [14]. The
balancing controller tracks the desired shape trajectories,
qd

s(t), which are a sum of planned,qp
s(t) and compensation,

qc
s(t), shape trajectories. The planned shape trajectories are

given by the optimal shape trajectory planner, whereas the
compensation shape trajectories are provided by the tracking
controller, which tries to compensate for the deviation of
external trajectories from the desired ones.

IV. HYBRID CONTROL FOR NAVIGATION

This section presents a hybrid control formalism based on
sequential composition[6] that will enable shape-accelerated
underactuated balancing systems, like the ballbot, to navigate
an environment with obstacles.

A. Sequential Composition

Given a set of control policiesU= {Φ1, ...,Φn}, each with
a domain,D(Φi) and goal set,G(Φi). It is presumed that
the control policyΦi will take any state in domainD(Φi) to
G(Φi) without leavingD(Φi). It is said that the control policy
Φ1 preparesΦ2, denoted byΦ1 � Φ2, if the goal of the first
lies inside the domain of the second,i.e.,G(Φ1)⊂ D(Φ2).

A directed graph can be generated for an appropriate set of
control policiesU. If the start stateS belongs to the domain
of at least one control policy,i.e.,∃ i ∈ [1,n], s.t. S∈ D(Φi)
and the overall goalG belongs to the goal set of at least
one control policy,i.e.,∃ i ∈ [1,n], s.t. G∈ G(Φi), then the
navigation problem becomes a graph search problem, where
the optimal sequence of control policies to reach the overall
goal can be found.

B. Asymptotically Convergent Domains

In the original sequential compositionapproach [6], the
policy domains defined are invariant,i.e., under the action
of the policy Φi , the state trajectory starting insideD(Φi)
remains within the domain until it reachesG(Φi). The
control policies that will be defined in the later sections ofthe
paper do have invariant domains (or) domains of attraction
that can be determined using Lyapunov-based methods. But
they are generally quite complicated and in our attempt to
do navigation, it would often be preferable to have smaller
subsets of these domains. So, policy domains can be defined
with simple geometric shapes that are not necessarily invari-
ant but have asymptotic convergence properties,i.e., under
the action of the policyΦi , the state trajectory starting inside
D(Φi) remains within domainD′(Φi) such thatD(Φi) ⊆
D
′(Φi) until it reachesG(Φi). These geometric shapes make

it simple to determine whether a given state is within a
particular policy domain or not.

These domains are generally defined over the state space
of the system, whereas in this paper they are defined only
over a subset of the state space given by the external
variables,i.e.,(qx, q̇x). This reduction in dimensionality for
the domains is possible due to the strong coupling between

the shape and external variables. Any changes in shape
configurations cause changes in the external configurations
and in order to track any desired external configuration
trajectory, the shape configurations have to follow a particular
trajectory that is stable. The balancing controller (Sec. III-
B), which makes this tracking possible, is assumed to have
a large enough domain of attraction in the shape state space.

x

x y

Fig. 3. 3D projection of the 4D ice-cream hypercone.

For the ballbot example, ice-cream shaped hypercones
defined in (xw,yw, ẋw, ẏw)-space (4D) are used as policy
domains. A 3D projection of the ice-cream hypercone is
shown in Fig. 3. The ice-cream hypercones are formed by
fusing a semi-hyperellipsoid and a hypercone with ellipsoidal
cross-section. These ice-cream hypercones are parametrized
by the lengths of the semi-principal axes of the hyperellipsoid
and the height of the hypercone.

C. Palette of Control Policies

This section presents the available control policies to
perform hybrid control. There are two control policies with
different objectives:

(i) Stopping Control Policy, where the desired goal con-
figuration is to come to rest at the tip of the ice-cream
hypercone; and

(ii) Moving/Flow-Through Control Policy, where the de-
sired goal configuration is to continue moving with
a desired velocity through the tip of the ice-cream
hypercone.

The dynamics of the shape-accelerated underactuated bal-
ancing system is invariant to both position and velocity of
the external variables and hence these policy domains can
be placed anywhere with any orientation in the 4D external
variable state space. Moreover, the policy domains,i.e., ice-
cream hypercones, are free to be rotated only on the XY-
plane, so that the stopping control policies always have
zero velocity goal configurations, whereas, the flow-through
control policies have the same desired exit speed.

In this work, a control policy consists of: (i) an external
trajectory planner, which plans a trajectory from each point
in the 4D policy domain to its goal state; (ii ) an optimal
shape trajectory planner, which plans shape trajectories that
ensure optimal tracking of the desired external trajectories;
(iii ) a tracking controller, which ensures better tracking of the
desired external trajectories; and (iv) a balancing controller,
which ensures accurate tracking of desired shape trajectories.



Bezier curves are used to plan external trajectories for mo-
tion inside the ice-cream hypercone domains. The parametric
Bezier curve(x(t),y(t)) can be written as:

x(t) =
n

∑
i=0

xibi,n(t), y(t) =
n

∑
i=0

yibi,n(t), (16)

where,(xi ,yi) are then+1 control points and the Bernstein
polynomialbi,n(t) is given by:

bi,n(t) =

(

n
i

)

t i (1− t)(n−i) (0≤ t ≤ 1). (17)

The n+1 control points are chosen such that the boundary
conditions are satisfied,i.e., the initial condition and the
desired final goal configuration. When the boundary condi-
tions include conditions on the derivatives, then+1 control
points and, in turn, the Bezier curve is a function of the
time duration of the curve. The optimal time duration that
minimizes the summed area under the curve of the position,
velocity, acceleration and jerk trajectories is used here.A
variety of other objective functions can also be optimized to
obtain the time duration.

Shape trajectories are planned using the optimal shape
trajectory planner described in Sec. III-A for the Bezier
curves. As described in Sec. III-B, the external trajectory
tracking controller, in combination with the shape trajectory
planner, is used to provide desired shape trajectories thatthe
balancing controller will track.

D. Prepares Graph

Given an environment and a collection of policy domains
distributed in the 4D space, apreparesgraph can be gener-
ated, where each node corresponds to a policy domain and
each directed link represents thepreparesrelationship. The
task of navigating from a given start state to a desired overall
goal state can be performed by the described hybrid control
scheme provided the following conditions are satisfied: (i)
there is at least one domain that contains the start state;
(ii ) there is at least one domain whose goal configuration
matches the goal state; and (iii ) there is a path between these
two domains in thepreparesgraph.

Optimal graph search algorithms likeA∗ can be used to
obtain a sequence of control policies that are optimal w.r.t.
some cost function. A variety of heuristic functions can
be used to even optimize for time or length of the path.
Existing dynamic replanning graph search algorithms likeD∗

[16] can be used for automatically replanning the sequence
of control policies when the system is disturbed from its
current path. An integrated planning and control procedure
has been developed, where the high-level planner is planning
a sequence of control policies and dynamically updating the
sequence based on the system’s current state and overall
desired goal.

E. Switching Control

Given a pathi.e., a sequence of control policies to reach
the overall goal, a hybrid control strategy is used that sequen-
tially composes asymptotically convergent control policies

with discrete state-based switching between them. To initiate
the switching behavior, it is necessary to determine whether
the state trajectory has entered a domain or not. Simple
geometric domain shapes make it easier to determine whether
the external state lies inside the geometric shape by use of
analytical equations.

The Bezier curves and the corresponding shape trajectory
plans are generated online based on the entering external
state values. These trajectories are tracked until the state
trajectory enters the next policy domain along the path
towards its overall goal. This switching behavior continues
until the state trajectory reaches the final policy domain that
contains the overall goal.

V. SIMULATION RESULTS

In this section, we present simulation results of the hybrid
control procedure, described in Sec. IV, on the 3D ballbot
model. Here, the navigation goal is to move from (0 m, 0
m) to (10 m, 10 m) around two obstacles in the environment
shown in Fig. 4(a).
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Fig. 4. (a) Environment with start and goal configurations andalso the
available policy domains; (b)PreparesGraph.

For example, suppose that the ice-cream hypercone pol-
icy domains are placed in the environment as shown in
Fig. 4(a). Note that the policy domains are placed in a
4-dimensional subset of the state space and are projected
onto the 2-dimensional workspace for ease of visualization.
The resultingpreparesgraph is shown in Fig. 4(b). In the
case presented, none of the policy domains collide with the
obstacles. The policy domains that intersect the obstaclesare
removed before generating thepreparesgraph. Moreover, the
collision check is done with the outer ice-cream hypercone
domainsD′(Φi) for each control policyΦi (Fig. 5).

A∗, with Euclidean distance between the goal configu-
rations of domains as the distance metric, was used to
determine the optimal path as shown in Fig. 5. The resulting
linear position and body angle trajectories are shown in
Figs. 6 and 7 respectively.
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VI. CONCLUSIONS

A hybrid control policy for navigation of shape-accelerated
underactuated balancing systems was presented. These-
quential composition[6] technique was extended for the
underactuated balancing systems with the policy domains
established as geometric shapes in only a subset of the state
space,i.e., state space w.r.t. external variables. The concept
of designing asymptotically convergent control policies was
introduced, with each policy consisting of a combination of
planners and controllers. An integrated planning and control
procedure was presented that consists of a high-level planner
that plans for the sequence of control policies to be followed
to achieve a navigation goal. Successful simulation results for
a 3D ballbot model navigating an environment with static
obstacles were presented.

VII. F UTURE WORK

As part of the future work, experimental testing of the
proposed hybrid control framework has to be done. A variety
of other geometric shapes for control policy domains must
be analyzed. The use of dynamic replanning algorithms, like
D∗, for replanning control policy sequences when the system
is subjected to large disturbances and also for planning in
environments with dynamic obstacles can be explored.
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